DNAzymes in DNA Nanomachines and DNA Analysis

  • Yu He
  • Ye Tian
  • Yi Chen
  • Chengde Mao
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter discusses our efforts in using DNAzymes in DNA nano-machines and DNA analysis systems. 10–23 DNAzymes can cleave specific phos-phodiester bonds in RNA. We use them to construct an autonomous DNA-RNA chimera nanomotor, which constantly extracts chemical energy from RNA substrates and transduces the energy into a mechanical motion: cycles of contraction and extension. The motor's motion can be reversibly turned on and off by a DNA analogue (brake) of the RNA substrate. Addition and removal of the brake stops and restarts, respectively, the motor's motion. Furthermore, when the RNA substrates are preorganized into a one-dimensional track, a DNAzyme can continuously move along the track so long as there are substrates available ahead. Based on a similar mechanism, a novel DNA detection system has been developed. A target DNA activates a DNAzyme to cleave RNA-containing molecular beacons (MB), which generates an enhanced fluorescence signal. A following work integrates two steps of signal amplifications: a rolling-circle amplification (RCA) to synthesize multiple copies of DNAzymes, and the DNAzymes catalyze a chemical reaction to generate a colorimetric signal. This method allows detection of DNA analytes whose concentration is as low as 1 pM.


Signal Amplification Mechanical Motion Molecular Beacon Nanomechanical Device Inhibitory Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the NSF (EIA-0323452) and Purdue University (a start-up fund).


  1. 1.
    Seeman, N.C. (2003) DNA in a material world. Nature (Lond.) 421:427–431.CrossRefGoogle Scholar
  2. 2.
    Feldkamp, U. and Niemeyer, CM. (2006) Rational design of DNA nanoarchitectures. Angew. Chem. Int. Ed. 45:1856–1876.CrossRefGoogle Scholar
  3. 3.
    Seeman, N.C. (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem. Sci. 30:119–125.CrossRefGoogle Scholar
  4. 4.
    Simmel, F.C. and Dittmer, W.U. (2005) DNA nanodevices. Small 1:284–299.CrossRefGoogle Scholar
  5. 5.
    Kelly, T.R. (2005) Molecular motors: synthetic DNA-based walkers inspired by kinesin. Angew. Chem. Int. Ed. 44:4124–4127.CrossRefGoogle Scholar
  6. 6.
    Shih, W.M., Quispe, J.D. and Joyce, G.F. (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature (Lond.) 427:618–621.CrossRefGoogle Scholar
  7. 7.
    Garibotti, A.V., Knudsen, S.M., Ellington, A.D. and Seeman, N.C. (2006) Functional DNAzymes organized into two-dimensional arrays. Nano Lett. 6:1505–1507.CrossRefGoogle Scholar
  8. 8.
    Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P., Blakey, M.I. and Simmel, F.C. (2003) DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90:118–120.CrossRefGoogle Scholar
  9. 9.
    Stojanovic, M.N., Prada, P. and Landry, D.W. (2001) Catalytic molecular beacons. ChemBioChem 2:411–415.CrossRefGoogle Scholar
  10. 10.
    Mao, C., Sun, W., Shen, Z. and Seeman, N.C. (1999) A nanomechanical device based on the B–Z transition of DNA. Nature (Lond.) 397:144–146.CrossRefGoogle Scholar
  11. 11.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C. and Neumann, J.L. (2000) A DNA-fuelled molecular machine made of DNA. Nature (Lond.) 406:605–608.CrossRefGoogle Scholar
  12. 12.
    Yan, H., Zhang, X., Shen, Z. and Seeman, N.C. (2002) A robust DNA mechanical device controlled by hybridization topology. Nature (Lond.) 415:62–65.CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Wang, M. and Mao, C. (2003) An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Ed. 43:3554–3557.CrossRefGoogle Scholar
  14. 14.
    Chen, Y. and Mao, C. (2004) Putting a brake on an autonomous DNA nanomotor. J. Am. Chem. Soc. 126:8626–8627.CrossRefGoogle Scholar
  15. 15.
    Vale, R.D. and Milligan, R.A. (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95.CrossRefGoogle Scholar
  16. 16.
    Schliwa, M. and Woehlke, G. (2003) Molecular motors. Nature (Lond.) 422:759–765.CrossRefGoogle Scholar
  17. 17.
    Alberts, B. (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294.CrossRefGoogle Scholar
  18. 18.
    Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y. and Futai, M. (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286:1722–1724.CrossRefGoogle Scholar
  19. 19.
    Santoro, S.W. and Joyce, G.F. (1997) A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94:4262–4266.CrossRefGoogle Scholar
  20. 20.
    Van Oijen, A.M., Blainey, P.C., Crampton, D.J., Richardson, C.C., Ellenberger, T. and Xie X.S. (2003) Single-molecule kinetics of λ exonuclease reveal base dependence and dynamic disorder. Science 301:1235–1238.CrossRefGoogle Scholar
  21. 21.
    Asbury, C.L., Fehr, A.N. and Block, S.M. (2003) Kinesin moves by an asymmetric hand-overhand mechanism. Science 302:2130–2134.CrossRefGoogle Scholar
  22. 22.
    Yildiz, A., Tomishige, M., Vale, R.D. and Selvin, P.R. (2004) Kinesin walks hand-over-hand. Science 303:676–678.CrossRefGoogle Scholar
  23. 23.
    Hammer, J.A. (1991) Novel myosins. Trends Cell Biol. 1:50–56.CrossRefGoogle Scholar
  24. 24.
    Tian, Y., He, Y., Chen, Y., Yin, P. and Mao, C. (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44:4355–4358.CrossRefGoogle Scholar
  25. 25.
    Rothemund, P.W.K. (2006) Folding DNA to create nanoscale shapes and patterns. Nature (Lond.) 440:297–302.CrossRefGoogle Scholar
  26. 26.
    Taton, T.A., Mirkin, C.A. and Letsinger, R.L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760.CrossRefGoogle Scholar
  27. 27.
    Park, S.J., Taton, T.A. and Mirkin, C.A. (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506.CrossRefGoogle Scholar
  28. 28.
    Chan, W.C.W. and Nie, S.M. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018.CrossRefGoogle Scholar
  29. 29.
    Maxwell, D.J., Taylor, J.R. and Nie, S.M. (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 124:9606–9612.CrossRefGoogle Scholar
  30. 30.
    Cao, Y.W.C., Jin, R.C. and Mirkin, C.A. (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540.CrossRefGoogle Scholar
  31. 31.
    Zhao, X., Tapec-Dytioco, R., Wang, K. and Tan, W. (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal. Chem. 75:3476–3483.CrossRefGoogle Scholar
  32. 32.
    Li, J. and Lu, Y. (2000) A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122:10466–10467.CrossRefGoogle Scholar
  33. 33.
    Tyagi, S., Bratu, D.P. and Kramer, F.R. (1998) Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16:49–53.CrossRefGoogle Scholar
  34. 34.
    Bonnet, G., Tyagi, S., Libchaber, A. and Kramer, F.R. (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc. Natl. Acad. Sci. USA 96:6171–6176.CrossRefGoogle Scholar
  35. 35.
    Tian, Y. and Mao, C. (2005) DNAzyme amplification of molecular beacon signal. Talanta 67:532–537.CrossRefGoogle Scholar
  36. 36.
    Travascio, P., Li, Y. and Sen, D. (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 5:505–517.CrossRefGoogle Scholar
  37. 37.
    Travascio, P., Witting, P.K., Mauk, A.G. and Sen, D. (2001) The peroxidase activity of a hemin-DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J. Am. Chem. Soc. 123:1337–1348.CrossRefGoogle Scholar
  38. 38.
    Cano, A., Hernández-Ruiz, J., García-Cánovas, F., Acosta, M. and Arnao, M.B. (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 9:196–202.CrossRefGoogle Scholar
  39. 39.
    Xiao, Y., Pavlov, V., Niazov, T., Dishon, A., Kotler, M. and Willner, I. (2004) Catalytic beacons for the detection of DNA and telomerase activity. J. Am. Chem. Soc. 126:7430–7431.CrossRefGoogle Scholar
  40. 40.
    Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M. and Willner, I. (2004) Amplified chemi-luminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal. Chem. 76:2152–2156.CrossRefGoogle Scholar
  41. 41.
    Niazov, T., Pavlov, V., Xiao, Y., Gill, R. and Willner, I. (2004) DNAzyme-functionalized Au nan-oparticles for the amplified detection of DNA or telomerase activity. Nano Lett. 4:1683–1687.CrossRefGoogle Scholar
  42. 42.
    Tian, Y., He, Y. and Mao, C. (2006) Cascade signal amplification for DNA detection. ChemBioChem 7:1862–1864.CrossRefGoogle Scholar
  43. 43.
    Fire, A. and Xu, S. (1995) Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92:4641–4645.CrossRefGoogle Scholar
  44. 44.
    Liu, D., Daubendiek, S.L., Zillman, M.A. and Kool, E.T. (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118:1587–1594.CrossRefGoogle Scholar
  45. 45.
    Yang, L., Fung, C.W., Cho, E.J. and Ellington, A.D. (2007) Real-time rolling circle amplification for protein detection. Anal. Chem. 79:3320–3329.CrossRefGoogle Scholar
  46. 46.
    Cho, E.J., Yang, L., Levy, M. and Ellington, A.D. (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc. 127:2022–2023.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yu He
  • Ye Tian
  • Yi Chen
  • Chengde Mao

There are no affiliations available

Personalised recommendations