Aptamer Microarrays

  • Heather Angel Syrett
  • James R. Collett
  • Andrew D. Ellington
Part of the Integrated Analytical Systems book series (ANASYS)


In vitro selection can yield specific, high-affinity aptamers. We and others have devised methods for the automated selection of aptamers and have begun to use these reagents for the construction of arrays. Arrayed aptamers have proven to be almost as sensitive as their solution-phase counterparts and when ganged together can provide both specific and general diagnostic signals for proteins and other ana-lytes. We describe here technical details regarding the production and processing of aptamer microarrays, including blocking, washing, drying, and scanning. We also discuss the challenges involved in developing standardized and reproducible methods for binding and quantitating protein targets. Although signals from fluorescent analytes or sandwiches are typically captured, it has proven possible for immobilized aptamers to be uniquely coupled to amplification methods not available to protein reagents, thus allowing for protein-binding signals to be greatly amplified. Into the future, many of the biosensor methods described in this book can potentially be adapted to array formats, thus further expanding the their utility and applications for aptamer arrays.


Microarray Slide Automate Selection Immobilize Metal Affinity Chromatography Direct Label Sandwich Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ellington, A.D., Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346(6287):818–822.CrossRefGoogle Scholar
  2. 2.
    Tuerk, C., Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510.CrossRefGoogle Scholar
  3. 3.
    Bock, L.C., et al. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature (Lond.) 355(6360):564–566.CrossRefGoogle Scholar
  4. 4.
    Nimjee, S.M., Rusconi, C.P. and Sullenger, B.A. (2005) Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56:555–583.CrossRefGoogle Scholar
  5. 5.
    Lee, J.F., et al. (2004) Aptamer database. Nucleic Acids Res. 32(database issue):D95–D100.CrossRefGoogle Scholar
  6. 6.
    Khati, M., et al. (2003) Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J. Virol. 77(23):12692–12698.CrossRefGoogle Scholar
  7. 7.
    Misono, T.S., Kumar, P.K. (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem. 342(2):312–317.CrossRefGoogle Scholar
  8. 8.
    Berezovski, M., et al. (2005) Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J. Am. Chem. Soc. 127(9):3165–3171.CrossRefGoogle Scholar
  9. 9.
    Berezovski, M., et al. (2006) Non-SELEX selection of aptamers. J. Am. Chem. Soc. 128(5):1410–1411.CrossRefGoogle Scholar
  10. 10.
    Mendonsa, S.D., Bowser, M.T. (2004) In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal. Chem. 76(18):5387–5392.CrossRefGoogle Scholar
  11. 11.
    Mosing, R.K., Mendonsa, S.D., Bowser, M.T. (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal. Chem. 77(19):6107–6112.CrossRefGoogle Scholar
  12. 12.
    Cox, J.C., Rudolph, P., Ellington, A.D. (1998) Automated RNA selection. Biotechnol. Prog. 14(6):845–850.CrossRefGoogle Scholar
  13. 13.
    Cox, J.C., Ellington, A.D. (2001) Automated selection of anti-protein aptamers. Bioorg. Med. Chem. Lett. 9(10):2525–2531.CrossRefGoogle Scholar
  14. 14.
    Cox, J.C., et al. (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30(20):e108.CrossRefGoogle Scholar
  15. 15.
    Cox, J.C., et al. (2002) Automated acquisition of aptamer sequences. Comb. Chem. High-Throughput Screen. 5(4):289–299.Google Scholar
  16. 16.
    Ellington, A.D., et al. (2005) Automated in vitro selections and microarray applications for functional RNA sequences. In: The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, pp. 683–719.Google Scholar
  17. 17.
    Hybarger, G., et al. (2006) A microfluidic SELEX prototype. Anal. Bioanal. Chem. 384(1): 191–198.CrossRefGoogle Scholar
  18. 18.
    Jhaveri, S.D. and Ellington, A.D. (2000) In vitro selection of RNA aptamers to a protein target by filter immobilization. In: Beaucage, S.L., et al. (eds.) Current protocols in nucleic acid chemistry. Wiley, New York, pp. 9.3.1–9.3.25.Google Scholar
  19. 19.
    Crameri, A. and Stemmer, W.P. (1993) 10(20)-fold aptamer library amplification without gel purification. Nucleic Acids Res. 21(18):4410.CrossRefGoogle Scholar
  20. 20.
    Bell, S.D., et al. (1998) RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase. J. Biol. Chem. 273(23):14309–14314.CrossRefGoogle Scholar
  21. 21.
    Pollard, J., Bell, S.D. and Ellington, A.D. (2000) Design, synthesis, and amplification of DNA pools for in vitro selection. In: Beaucage, S.L., et al. (eds.) Current protocols in nucleic acid chemistry. Wiley, New York, pp. 9.2.1–9.2.23.Google Scholar
  22. 22.
    Goertz, P., Cox, J.C. and Ellington, A.D. (2004) Automated selection of aminoglycoside aptamers. J. Assoc. Lab. Autom. 9:150–154.CrossRefGoogle Scholar
  23. 23.
    Sooter, L.J. and Ellington, A.D. (2004) Automated selection of transcription factor binding sites. J. Assoc. Lab. Autom. 9:277–284.CrossRefGoogle Scholar
  24. 24.
    Liu, J.J., Hartman, D.S. and Bostwick, J.R. (2003) An immobilized metal ion affinity adsorption and scintillation proximity assay for receptor-stimulated phosphoinositide hydrolysis. Anal. Biochem. 318(1):91–99.CrossRefGoogle Scholar
  25. 25.
    Worlock, A.J., et al. (1991) The use of paramagnetic beads for the detection of major histo-compatibility complex class I and class II antigens. Biotechniques 10(3):310–315.Google Scholar
  26. 26.
    McKay, S.J., Cooke, H. (1992) hnRNP A2/B1 binds specifically to single stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res. 20(24):6461–6464.CrossRefGoogle Scholar
  27. 27.
    McKay, S.J., Cooke, H. (1992) A protein which specifically binds to single stranded TTAGGGn repeats. Nucleic Acids Res. 20(6):1387–1391.CrossRefGoogle Scholar
  28. 28.
    Froystad, M.K., et al. (1998) A role for scavenger receptors in phagocytosis of protein-coated particles in rainbow trout head kidney macrophages. Dev. Comp. Immunol. 22(5–6):533–549.CrossRefGoogle Scholar
  29. 29.
    Laine, S., et al. (2003) In vitro and in vivo interactions between the hepatitis B virus protein P22 and the cellular protein gClqR. J. Virol. 77:12875–12880.CrossRefGoogle Scholar
  30. 30.
    Pyle, B.H., Broadaway, S.C. and McFeters, G.A. (1999) Sensitive detection of Escherichia coli0157:H7 in food and water by immunomagnetic separation and solid-phase laser cytom-etry. Appl. Environ. Microbiol. 65:1966–1972.Google Scholar
  31. 31.
    Stovall, G.M., Cox, J.C. and Ellington, A.D. (2004) Automated optimization of aptamer selection buffer conditions. J. Assoc. Lab. Autom. 9(3):117.CrossRefGoogle Scholar
  32. 32.
    Rajendran, M., Ellington, A.D. (2002) Selecting nucleic acids for biosensor applications. Comb. Chem. High-Throughput. Screen. 5(4):263–270.Google Scholar
  33. 33.
    Chapman-Smith, A., Cronan, J.E. Jr. (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem. Sci. 24(9):359–363.CrossRefGoogle Scholar
  34. 34.
    Saviranta, P., et al. (1998) In vitro enzymatic biotinylation of recombinant fab fragments through a peptide acceptor tail. Bioconjug. Chem. 9(6):725–735.CrossRefGoogle Scholar
  35. 35.
    Cull, M.G. and Schatz, P.J. (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. Methods Enzymol. 326:430–440.CrossRefGoogle Scholar
  36. 36.
    McAllister, H.C. and Coon, M.J. (1966) Further studies on the properties of liver propionyl coenzyme A holocarboxylase synthetase and the specificity of holocarboxylase formation. J. Biol. Chem. 241(12):2855–2861.Google Scholar
  37. 37.
    Zhu, H., et al. (2000) Analysis of yeast protein kinases using protein chips. Nat. Genet. 26(3):283–289.CrossRefGoogle Scholar
  38. 38.
    Ramachandran, N., et al. (2004) Self-assembling protein microarrays. Science 305(5680):86–90.CrossRefGoogle Scholar
  39. 39.
    Stadtherr, K., Wolf, H., Lindner, P. (2005) An aptamer-based protein biochip. Anal. Chem. 77(11):3437–3443.CrossRefGoogle Scholar
  40. 40.
    Stoltenburg, R., Reinemann, C., Strehlitz, B. (2005) FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383(1):83–91.CrossRefGoogle Scholar
  41. 41.
    Bini, A., Minunni, M., Tombelli, S., Centi, S., Mascini, M. (2007) Analytical performances of aptamer-based sensing for thrombin detection. Anal. Chem. 79(7):3016–3019.CrossRefGoogle Scholar
  42. 42.
    Collett, J.R., Cho, E.J. and Ellington, A.D. (2005) Production and processing of aptamer microarrays. Methods 37(1):4–15.CrossRefGoogle Scholar
  43. 43.
    Kirby, R., et al. (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal. Chem. 76(14):4066–4075.CrossRefGoogle Scholar
  44. 44.
    McCauley, T.G., Hamaguchi, N. and Stanton, M. (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 319(2):244–250.CrossRefGoogle Scholar
  45. 45.
    Yang, L., et al. (2007) Real-time rolling circle amplification for protein detection. Anal. Chem. 79(9):3320–3329.CrossRefGoogle Scholar
  46. 46.
    Cho, E.J., et al. (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J. Am. Chem. Soc. 127(7):2022–2023.CrossRefGoogle Scholar
  47. 47.
    Wengel, J., et al. (2001) LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids 20(4–7):389–396.CrossRefGoogle Scholar
  48. 48.
    You, Y., et al. (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 34(8):e60.CrossRefGoogle Scholar
  49. 49.
    Li, Y., Lee, H.J. and Corn, R.M. (2006) Fabrication and characterization of RNA aptamer-microarrays for the study of protein–aptamer interactions with SPR imaging. Nucleic Acids Res. 34:1–9.CrossRefGoogle Scholar
  50. 50.
    Li, Y., Lee, H.J. and Corn, R.M. (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal. Chem. 79(3):1082–1088.CrossRefGoogle Scholar
  51. 51.
    DeRisi, J., Iyer, V. and Brown, P.O. (1999) The MGuide: a complete guide to building your own microarrayer. Biochemistry Department, Stanford University, Palo Alto, CA.Google Scholar
  52. 52.
    Haab, B.B., Dunham, M.J. and Brown, P.O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2(2):1–3.CrossRefGoogle Scholar
  53. 53.
    Miller, J.C., et al. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3(1):56–63.CrossRefGoogle Scholar
  54. 54.
    Collett, J.R., et al. (2005) Functional RNA microarrays for high-throughput screening of antiprotein aptamers. Anal. Biochem. 338(1):113–123.CrossRefGoogle Scholar
  55. 55.
    Martinez, M.J., et al. (2003) Identification and removal of contaminating fluorescence from commercial and in-house printed DNA microarrays. Nucleic Acids Res. 31(4):e18.CrossRefGoogle Scholar
  56. 56.
    Timlin, J.A., et al. (2005) Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data. BMC Genomics 6(1):72.CrossRefGoogle Scholar
  57. 57.
    Schweitzer, B., et al. (2002) Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol. 20(4):359–365.CrossRefGoogle Scholar
  58. 58.
    Nielsen, U.B., Geierstanger, B.H. (2004) Multiplexed sandwich assays in microarray format. J. Immunol. Methods 290(1–2):107–120.CrossRefGoogle Scholar
  59. 59.
    Perlee, L., et al. (2004) Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics. Proteome Sci. 2(1):9.CrossRefGoogle Scholar
  60. 60.
    Varnum, S.M., Woodbury, R.L. and Zangar, R.C. (2004) A protein microarray ELISA for screening biological fluids. Methods Mol. Biol. 264:161–172Google Scholar
  61. 61.
    Zangar, R.C., Daly, D.S., White, A.M. (2006) ELISA microarray technology as a high-throughput system for cancer biomarker validation. Expert Rev. Proteomics 3(1):37–44.CrossRefGoogle Scholar
  62. 62.
    Engvall, E., Perlman, P. (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8(9):871–874.Google Scholar
  63. 63.
    Soderberg, O., et al. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3(12):995–1000.CrossRefGoogle Scholar
  64. 64.
    Crowther, J.R. (2000) The ELISA guidebook. Methods Mol. Biol. 149(III–IV):1–413.Google Scholar
  65. 65.
    Nielsen, U.B., et al. (2003) Profiling receptor tyrosine kinase activation by using Ab microar-rays. Proc. Natl. Acad. Sci. USA 100(16):9330–9335.CrossRefGoogle Scholar
  66. 66.
    Zhou, H., et al. (2004) Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol. 5(4):R28.CrossRefGoogle Scholar
  67. 67.
    MacBeath, G. (2002) Protein microarrays and proteomics. Nat. Genet. 32(suppl):526–532.CrossRefGoogle Scholar
  68. 68.
    Pavlickova, P., Schneider, E.M., Hug, H. (2004) Advances in recombinant antibody micro-arrays. Clin. Chim. Acta 343(1–2):17–35.CrossRefGoogle Scholar
  69. 69.
    Wingren, C. and Borrebaeck, C.A. (2006) Antibody microarrays: current status and key technological advances. Proteomics 10(3):411–427.Google Scholar
  70. 70.
    Saal, L.H., et al. (2002) BioArray Software Environment (BASE): a platform for comprehensive management and analysis of microarray data. Genome Biol. 3(8):SOFTWARE0003.1–3.6.Google Scholar
  71. 71.
    Whetzel, P.L., et al. (2006) The MGED ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873.CrossRefGoogle Scholar
  72. 71.
    Spellman, P.T., et al. (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3(9):RESEARCH0046.Google Scholar
  73. 73.
    Hamelinck, D., et al. (2005) Optimized normalization for antibody microarrays and application to serum-protein profiling. Mol. Cell Proteomics 4(6):773–784.CrossRefGoogle Scholar
  74. 74.
    Master, S.R., Bierl, C., Kricka, L.J. (2006) Diagnostic challenges for multiplexed protein microarrays. Drug Disc. Today 11(21–22):1007–1011.CrossRefGoogle Scholar
  75. 75.
    White, A.M., et al. (2006) ProMAT: protein microarray analysis tool. Bioinformatics 22(10):1278–1279.CrossRefGoogle Scholar
  76. 76.
    Daly, D.S., et al. (2005) Evaluating concentration estimation errors in ELISA microarray experiments. BMC Bioinform. 6:17.Google Scholar
  77. 77.
    Dietz, T.M. and Koch, T.H. (1987) Photochemical coupling of 5-bromouracil to tryptophan, tyrosine and histidine, peptide-like derivatives in aqueous fluid solution. Photochem. Photobiol. 46(6):971–978.CrossRefGoogle Scholar
  78. 78.
    Dietz, T.M. and Koch, T.H. (1987) Photochemical reduction of 5-bromouracil by cysteine derivatives and coupling of 5-bromouracil to cystine derivatives. Photochem. Photobiol. 49(2):121–129.CrossRefGoogle Scholar
  79. 79.
    Golden, M.C., et al. (1999) Mass spectral characterization of a protein-nucleic acid photo-crosslink. Protein Sci. 8(12):2806–2812.CrossRefGoogle Scholar
  80. 80.
    Golden, M.C., et al. (2000) Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J. Biotechnol. 81(2–3):167–178.CrossRefGoogle Scholar
  81. 81.
    Smith, D., et al. (2003) Sensitivity and specificity of photoaptamer probes. Mol. Cell Proteomics 2(1):11–18.CrossRefGoogle Scholar
  82. 82.
    Petach, H., et al. (2004) Processing of photoaptamer microarrays. Methods Mol. Biol. 264:101–110.Google Scholar
  83. 83.
    Robertson, M.P. and Ellington, A.D. (2004) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 28(8):1751–1759.CrossRefGoogle Scholar
  84. 84.
    Robertson, M.P., Knudsen, S.M., Ellington, A.D. (2004) In vitro selection of ribozymes de-pendent on peptides for activity. RNA 10(1):114–127.CrossRefGoogle Scholar
  85. 85.
    Yang, L. and Ellington, A.D. (2007) Real-time PCR detection of protein analytes with conformation-switching aptamers. Nucleic Acids Res. (submitted).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Heather Angel Syrett
  • James R. Collett
    • 1
  • Andrew D. Ellington
  1. 1.Pacific Northwest National LaboratoryRichland

Personalised recommendations