Advertisement

Grid-based Image Registration

  • William Gropp
  • Eldad Haber
  • Stefen Heldmann
  • David Keyes
  • Neill Miller
  • Jennifer Schopf
  • Tianzhi Yang
Part of the IFIP The International Federation for Information Processing book series (IFIPAICT, volume 239)

Abstract

We introduce and discuss preliminary experience with an application that has vast potential to exploit the Grid for social benefit and offers interesting resource assessment and allocation challenges, having real-time aspects: image registration. Image registration is generally formulated as an optimization problem that satisfies constraints, such as coordinate displacements that are affine or volumepreserving or that obey the laws of elasticity. Three-dimensional registration of high-resolution images is computationally complex and justifies parallel implementation. In turn, ensembles of registration tasks exploit concurrency in the simpler sense of job farming.

Keywords

Medical image registration asynchronous numerical algorithms Grid-based processing MPI-based parallelization 

References

  1. 1.
    Anderson, W. K, Gropp, W. D., Kaushik, D. K., Keyes, D. E. and Smith, B. F. (1999). Achieving High Sustained Performance in an Unstructured Mesh GFD Application, in “Proceedings of SC’99,” IEEE Computer Society, Los Alamitos.Google Scholar
  2. 2.
    Bojanov, B., Hakopian, H. and Sahakian, B. (1993). Spline Functions and Multivariate Interpolation, Springer, New York.Google Scholar
  3. 3.
    Briggs, W. L., Henson, V. E. and McCormick, S. F. (2000). A Multigrid Tutorial, SIAM, Philadelphia.zbMATHGoogle Scholar
  4. 4.
    Browne, J. C, Yalamanchi, M., Kane, K. and Sankaralingam, K. (2004). General Parallel Computations on Desktop Grid and P2P Systems, in “Proceedings of LCR 2004: Seventh Workshop on Languages, Compilers & Runtime Support for Scalable Systems,” University of Houston, Houston.Google Scholar
  5. 5.
    Cai, X.-C, Gropp, W. D., Keyes, D. E. and Tidriri, M. D. (1993). Newton-Krylov-Schwarz Methods in GFD, in “Numerical Methods for the Navier-Stokes Equations” (F.-K. Hebeker et al., eds.), Vieweg, Braunschweig.Google Scholar
  6. 6.
    Cai, X.-C. and Sarkis, M. (1999). A Restricted Additive Schwarz F’reconditioner for General Sparse Linear Systems, SIAM J. Sci. Comput. 21: 792–797.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cai, X. C. and Keyes, D. E. (2002). Nonlinearly Preconditioned Inexact Newton Algorithms, SIAM J. Sci. Comp. 24: 183–200.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chazan, D. and Miranker, W. (1969). Chaotic Relaxation, Linear Alg. Applies. 2: 199–222.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chung, J., Haber, E. and Nagy, J. (2006). Numerical Methods for Coupled Super-Resolution Inverse Problems 22: 1261–1272.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Elad, M. and Feuer, A. (1997). Numerical Methods for Coupled Super-Resolution Inverse Problems 22: 1261–1272.Google Scholar
  11. 11.
    Garbey, M. and Tromeur-Dervout, D. (2000). A Parallel Adaptive Coupling Algorithm for Systems of Differential Equations, J. Comput. Phys. 161: 401–427.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
  13. 13.
    Greenbaum, A. (1997). Iterative Methods for Solving Linear Systems, SIAM, Philadelphia.zbMATHGoogle Scholar
  14. 14.
    Haber, E. and Modersitzki, J. (2006). A Multilevel Method for Image Registration, SIAM J. Sci. Comput. 27: 1594–1607.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Haber, E. and Modersitzki, J. (2006). Intensity gradient based registration and fusion of multi-modal images, Medical Image Computing and Computer-Assisted Intervention–MICCAI (2), pp. 726–733.Google Scholar
  16. 16.
  17. 17.
    ISI, Information Sciences Institute, University of Southern California (2006). Breaking the Medical Image Communication Barrier, http://www.isi.edu/news/news.php7story=152.
  18. 18.
    ITER (2006). http://www.iter.org/.
  19. 19.
    Kelley, C. T. (1995). Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia.zbMATHGoogle Scholar
  20. 20.
    Keyes, D. E. (1998). How Scalable is Domain Decomposition in Practice?, in “Proceedings of the 11th Intl. Conf. on Domain Decomposition Methods” (C. H. Lai, et al, eds.), pp. 286–297, DDM.ORG, New York.Google Scholar
  21. 21.
    Lee, B., McCormick, S. F., Philip, B. and Quinlan, D. J. (2003). Asynchronous Fast Adaptive Composite-Grid Methods: Numerical Results, SIAM J. Sci. Comput. 25: 682–700.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Modersitzki, J. (2004). Numerical Methods for Image Registration, Oxford University Press, Oxford.zbMATHGoogle Scholar
  23. 23.
    OpenPBS (2003). http://www.openpbs.org/.
  24. 24.
  25. 25.
    Saad, Y. (1996). Iterative Methods for Sparse Linear Systems, PWS Publishing, Boston.zbMATHGoogle Scholar
  26. 26.
    Springer Verlag (2006). Journals and New Books in Imaging, 56 pp.Google Scholar
  27. 27.
    Toselli, A. and Widlund O. (2005). Domain Decomposition Methods — Algorithms and Theory, Springer, New York.zbMATHGoogle Scholar
  28. 28.
  29. 29.
    Viola, P. (1995). Alignment by Maximization of Mutual Information, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  30. 30.

Copyright information

© International Federation for Information Processing 2007

Authors and Affiliations

  • William Gropp
    • 1
  • Eldad Haber
    • 2
  • Stefen Heldmann
    • 2
  • David Keyes
    • 3
  • Neill Miller
    • 1
  • Jennifer Schopf
    • 1
  • Tianzhi Yang
    • 3
  1. 1.Computation InstituteUniversity of ChicagoChicago
  2. 2.Mathematics & Computer ScienceEmory UniversityAtlantaUSA
  3. 3.Applied Physics & Applied MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations