Skip to main content

Theories and Simulations for Electrochemical Nanostructures

  • Chapter
  • First Online:
  • 1797 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Electrochemical nanostructures are special because they can be charged or, equivalently, be controlled by the electrode potential. In cases where an auxiliary electrode, such as the tip of a scanning tunneling microscope, is employed, there are even two potential drops that can be controlled individually: the bias potential between the two electrodes and the potential of one electrode with respect to the reference electrode. Thus, electrochemistry offers more possibilities for the generation or modification of nanostructures than systems in air or in vacuum do. However, this advantage carries a price: electrochemical interfaces are more complex, because they include the solvent and ions. This poses a great problem for the modeling of these interfaces, since it is generally impossible to treat all particles at an equal level. For example, simulations for the generation of metal clusters typically neglect the solvent, while theories for electron transfer through nanostructures treat the solvent in a highly abstract way as a phonon bath. Therefore, a theorist investigating a particular system must decide, in advance, which parts of the system to treat explicitly and which parts to neglect. Of course, to some extent this is true for all theoretical research, but the more complex the investigated system, the more difficult, and debatable, this choice becomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. A. Marcus, J. Chem. Phys. 24 (1956) 966.

    Article  CAS  Google Scholar 

  2. N. S. Hush, J. Chem. Phys. 28 (1958) 962.

    Article  CAS  Google Scholar 

  3. S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev. B 33 (1986) 7983.

    Article  CAS  Google Scholar 

  4. G.E. Engelmann, J. Ziegler, D.M. Kolb, Surf. Sci. Lett 401 (1998) L420.

    Article  CAS  Google Scholar 

  5. D.M. Kolb, F.C. Simeone, Electrochim. Acta 50 (2005) 2989.

    CAS  Google Scholar 

  6. D.M. Kolb, R. Ullmann and J.C. Ziegler, Electrochim. Acta 43 (1998) 2751.

    CAS  Google Scholar 

  7. U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Science 248 (1990) 454.

    Article  CAS  Google Scholar 

  8. M.G. Del Pópolo, E.P.M. Leiva, M.M. Mariscal, W. Schmickler, Surf. Sci. 597 (2005) 133.

    Article  Google Scholar 

  9. M.M. Mariscal, C.F. Narambuena , M.G. Del Popolo, E. P. M. Leiva, Nanotechnology 16 (2005) 974.

    Article  CAS  Google Scholar 

  10. N.B. Luque, E.P.M. Leiva, Electrochimica Acta 50 (2005) 3161.

    CAS  Google Scholar 

  11. M.G. Del Pópolo, E.P.M. Leiva, H. Kleine, J. Meier, U. Stimming, M. Mariscal, W. Schmickler, Appl. Phys. Lett. 81 (2002) 2635.

    Article  Google Scholar 

  12. M. Mariscal, W. Schmickler, J. Electroanal. Chem. 582 (2005) 64.

    CAS  Google Scholar 

  13. D.M. Kolb, M. Przasnyski, H. Gerischer, J. Electroanal. Chem. 54, (1974) 25 .

    CAS  Google Scholar 

  14. G.E. Engelmann, J.C. Ziegler, D.M. Kolb, J. Electrochem. Soc. 45 (1998) L33.

    Google Scholar 

  15. R. Ullman, PhD. Thesis, Fakultät für Naturwissenchaften der Universität Ulm (1997).

    Google Scholar 

  16. J.C. Ziegler, PhD Thesis, Fakultät für Naturwissenschaften der Universität Ulm (2000).

    Google Scholar 

  17. D.M. Kolb, G.E. Engelmann, J.C. Ziegler, Solid State Ionics, 131 (2000) 69.

    Article  CAS  Google Scholar 

  18. U. Landman, W.D. Luedtke, Scanning tunnelling microscopy, Chapter 3, Springer Verlag, (1993).

    Google Scholar 

  19. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33 (1986) 7983.

    Google Scholar 

  20. R. Schuster, V. Kirchner, X.H. Xia, A.M. Bittner, G. Ertl, Phys. Rev. Lett. 80 (1998) 5599.

    Article  CAS  Google Scholar 

  21. T. Solomun, and W. Kautek, Electrochimica Acta 47 (2001) 679.

    CAS  Google Scholar 

  22. X.H. Xia, R. Schuster, V. Kirchner and G. Ertl, J. Electroanal. Chem. 461 (1999) 102.

    CAS  Google Scholar 

  23. C. Sánchez, E.P.M. Leiva, J. Electroanal. Chem 458 (1998) 183.

    Google Scholar 

  24. C.E.D. Chidsey, Science 251 (1991) 919.

    Google Scholar 

  25. Molecular Electronics – Science and Technology, edited by A. Aviram and M. Ratner, Ann. N.Y. Acad. Sci. 852 (1998).

    Google Scholar 

  26. S. Roth, C. Joachim, Atomic and Molecular Wires, Kluwer, Dordrecht (1997).

    Google Scholar 

  27. Molecular Devices, edited by F. L. Carter, Marcel Decker, N.Y. (1982).

    Google Scholar 

  28. J.F. Smalley, S.W. Feldberg, C.E.D. Chidsey, M.R. Lindford, M.D. Newton, Yi-Ping Liu, J. Phys. Chem 99 (1995) 13149.

    Article  Google Scholar 

  29. W. Schmickler, Interfacial Electrochemistry, Oxford University Press, New York, 1996.

    Google Scholar 

  30. W. Schmickler, Surf. Sci. 295 (1993) 43.

    Article  CAS  Google Scholar 

  31. N.S. Wingreen, K.J. Jacobsen, J.W. Wilkins, Phys. Rev. Lett. 61 (1988) 1396; Phys. Rev. B 40 (1989) 11834.

    Article  Google Scholar 

  32. L.E. Hall, J.R. Reimers, N.S. Hush, K. Silverbrook, J. Chem. Phys. 112 (2000) 1510.

    Article  CAS  Google Scholar 

  33. H. Gerischer, Z. Phys. Chem. NF 6 (1960) 223.

    Article  Google Scholar 

  34. A.N. Kuznetsov, W. Schmickler, Chem. Phys. 282 (2002) 371.

    Article  CAS  Google Scholar 

  35. M.T.M. Koper, W. Schmickler, A Unified Model for Electron and Ion Transfer Reactions on Metal Electrodes, in: Frontiers of Electrochemistry, ed. by J. Lipkowski and P.N. Ross, VCH Publishers (1998).

    Google Scholar 

  36. N. Tao, Phys. Rev. Lett. 76 (1996) 4066.

    Article  CAS  Google Scholar 

  37. W. Schmickler, N. Tao, Electrochim. Acta 42 (1997) 2809.

    CAS  Google Scholar 

  38. E, Tran, M.A. Rampi, G.M. Whitesides, Angew. Chem. Int. Ed. 43 (2004) 3835.

    Article  CAS  Google Scholar 

  39. M.L. Chabinyc, X. Chen, R.E. Holmlin, H.O. Jacobs, H. Skulason, C. D. Frisbie, V. Mujica, M.A. Ratner, M. A., Rampi, G.M. Whitesides, J. Am. Chem. Soc. 124 (2002) 11730.

    Article  CAS  Google Scholar 

  40. C. Grave, E. Tran, P. Samor, G. M. Whitesides, and M. A. Rampi, Synthetic Metals 147 (2004) 11.

    Article  CAS  Google Scholar 

  41. W. Schmickler, Chem. Phys. 289 (2003) 349.

    Article  CAS  Google Scholar 

  42. Surface Science 573 (2004).

    Google Scholar 

  43. Surface Science 597 (2005).

    Google Scholar 

  44. Z. Li, B. Han, L.J. Wan, T. Wandlowski, Langmuir 21 (2005) 6915.

    Article  CAS  Google Scholar 

  45. D. M. Kolb, G. E. Engelmann, J. C. Ziegler, Angewandte Chemie, Int. Ed. 39 (2000) 1123.

    Article  CAS  Google Scholar 

  46. H. Ibach, W. Schmickler, Phys. Rev. Lett., 91 (2003) 016106.

    Article  CAS  Google Scholar 

  47. M. Giesen, H. Ibach, W. Schmickler, Surf. Sci. 573 (2004) 24.

    Article  Google Scholar 

  48. M. Giesen Progr. Surf. Sci. 68 1 (2001).

    Article  CAS  Google Scholar 

  49. E. Leiva, P. Vélez, C. Sanchez, W. Schmickler, subm. to Phys. Rev. B74 (2006) 035422.

    Google Scholar 

  50. M.G. Del Pópolo, PhD. Thesis, Facultad de Ciencias Químicas de la Universidad Nacional de Córdoba (2002).

    Google Scholar 

Download references

Acknowledgments

W.S. acknowledges financial support by the Deutsche Forschungsgemeinschaft. E.P.M.L. acknowledges financial support from CONICET, Agencia Córdoba Ciencia, Secyt U.N.C., Program BID 1201/OC-AR PICT No. 06-12485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schmickler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leiva, E., Schmickler, W. (2009). Theories and Simulations for Electrochemical Nanostructures. In: Schmuki, P., Virtanen, S. (eds) Electrochemistry at the Nanoscale. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73582-5_1

Download citation

Publish with us

Policies and ethics