Skip to main content

Transition State Theory and Molecular Orbital Calculations Applied to Rates and Reaction Mechanisms in Geochemical Kinetics

  • Chapter
Kinetics of Water-Rock Interaction

For much of the history of geochemistry, thermodynamics has dominated discussions on geological processes. Geologic time is so long that systems were generally thought to reach equilibrium, so only knowledge of the reactants and products were considered important. As an emphasis on lower temperature processes and environment geochemistry has increased, the need to understand reaction rates has become more obvious. As geochemists have become more aware of the role of kinetics, disequilibrium has been found to be common. Even in mantle rocks where high temperatures and long equilibration times are the norm, disequilibrium has been observed (Bell and Ihinger, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramczyk H., Brozek-Pluska B., Kurczewski K., Szymczyk I., Szymczyk I., Blaszczyk T., Scholl H., and Czajkowski, W. (2006) Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalo-cyanine in water solutions. J. Phys. Chem. A 110: 8627-8636.

    Article  Google Scholar 

  • Ayala P. Y. and Schlegel H. B. (1998) Identification and treatment of internal rotation in normal mode vibrational analysis. J. Chem. Phys. 108, 2314-2325.

    Article  Google Scholar 

  • Barnes I., Stuart W. T., and Fisher D. W. (1964) Field investigations of mine waters in the northern anthracite field. Pennsylvania. U.S.G.S. Prof. Paper 473-B.

    Google Scholar 

  • Becke A. D. (1993) Density-functional thermochemistry.3. The role of exact exchange. J. Chem. Phys. 98, 5648-5652.

    Article  Google Scholar 

  • Becker U., Rosso K. M., and Hochella M. F. (2001) The proximity effect on semiconducting mineral surfaces: A new aspect of mineral surface reactivity and surface complexation theory? Geochim. Cosmochim. Acta 65, 2641-2649.

    Article  Google Scholar 

  • Binkley J. S., Pople J. A., and Hehre W. J. (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 102, 939-947.

    Article  Google Scholar 

  • Bell D. R. and Ihinger P. D. (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim. Cosmochim. Acta 64, 2109-2118.

    Article  Google Scholar 

  • Borda M. J., Elsetinow A. R., Strongin D. R., and Schoonen M. A. A. (2003) A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 67, 935-939.

    Article  Google Scholar 

  • Bunker B. C., Tallant D. R., Headley T. J., Turner G. L., and Kirkpatrick R. J. (1988) The structure of leached sodium borosilicate glass. Phys. Chem. Glasses 29, 106-120.

    Google Scholar 

  • Canc ès E., Mennucci B., and Tomasi J. (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107, 3032-3041.

    Article  Google Scholar 

  • Casey W. H., Westrich H. R., Massis T., Banfield J. F., and Arnold G. W. (1989) The surface of labradorite feldspar after acid-hydrolysis. Chem. Geol. 78 (3-4), 205-218.

    Article  Google Scholar 

  • Casey W. H., Lasaga A. C., and Gibbs G. V. (1990) Mechanisms of silica dissolution as inferred from the kinetic isotope effect. Geochim. Cosmochim. Acta 54, 3369-3378.

    Article  Google Scholar 

  • Casey W. H., Hochella M. F., and Westrich H. R. (1993) The surface chemistry of manganiferous silicate minerals as inferred from experiments on tephroite (Mn2 SiO4 ). Geochim. Cosmochim. Acta 57, 785-793.

    Article  Google Scholar 

  • Cerjan C. J. and Miller W. H. (1981) On finding transition states. J. Chem. Phys. 75, 2800-2807.

    Article  Google Scholar 

  • Chizallet C., Costentin G., Che M., Delbecq F., and Sautet, P. (2006) Revisiting acido-basicity of the MgO surface by periodic density functional theory calcu lations: Role of surface topology and ion coordination on water dissociation. J. Phys. Chem. B 110: 15878-15886.

    Article  Google Scholar 

  • Ciccotti G., Kapral R., and Vanden-Eijnden E. (2005) Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6: 1809-1814.

    Article  Google Scholar 

  • Cohn C. A., Mueller S., Wimmer E., Leifer N., Greenbaum S., Strongin D.R., Schoonen M. A. A. (2006) Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem. Trans. 7: Art. No. 3.

    Google Scholar 

  • Cramer C. J. (2002) Essentials of Computational Chemistry. John Wiley & Sons Ltd., West Sussex, England, 542 pp.

    Google Scholar 

  • Criscenti L. J., Brantley S. L., Mueller K.T., Tsomaia N., and Kubicki J. D. (2005) Theoretical and 27 Al CPMAS NMR investigation of aluminum coordi- nation changes during aluminosilicate dissolution. Geochim. Cosmochim. Acta, 69,2205-2220.

    Article  Google Scholar 

  • Criscenti L. J., Kubicki J. D., and Brantley S. L. (2006) Silicate glass and mineral dissolution: Calculated reaction paths and activation energies for hydrolysis of a Q3 Si by H3 O+ using ab initio methods. J. Phys. Chem. A, 110, 198-206.

    Article  Google Scholar 

  • Curtiss L. A., Raghavachari K., and Pople J. A. (1993) Gaussian-2 theory using reduced Møller-Plesset orders. J. Chem. Phys. 98, 1293-1298.

    Article  Google Scholar 

  • DiChristina T. J., Fredrickson J. K., and Zachara J. M. (2005) Enzymology of electron transport: Energy generation with geochemical consequences. In Molecular Geomicrobiology, J.F. Banfield, J. Cervini-Silva, and K.M. Nealson (eds), Miner-alogical Society of America and Geochemical Society, Chantilly VA, pp. 27-52.

    Google Scholar 

  • East A. L. L. and Radom L. (1997) Ab initio statistical thermodynamical models for the computation of third-law entropies. J. Chem. Phys. 106, 6655-6674.

    Article  Google Scholar 

  • Elsetinow A. R., Borda M. J., Schoonen M. A. A., and Strongin D. R. (2003) Suppression of pyrite oxidation in acidic aqueous environments using lipids having two hydrophobic tails. Adv. Environ. Res. 7, 969-974.

    Article  Google Scholar 

  • Felipe M., Xiao Y., and Kubicki J. D. (2001) Molecular orbital modeling and transition state theory in the geosciences. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society. 485-531.

    Google Scholar 

  • Felipe M. A., Kubicki J. D., and Rye D. M. (2003) Hydrogen isotope exchange kinetics between H2 O and H4 SiO4 from ab initio calculations. Geochim. Cosmochim. Acta 67, 1259-1276.

    Article  Google Scholar 

  • Felipe M. A., Kubicki J. D., and Freeman K. H. (2005) A mechanism for carbon isotope exchange between aqueous acetic acid and CO2 /HCO3 − : An ab initio study. Geochim. Cosmochim. Acta in press.

    Google Scholar 

  • Foresman J. B. and Frisch A. (1996) Exploring Chemistry with Electronic Structure Methods Second Edition; Gaussian, Inc.: Pittsburgh, 302 pp.

    Google Scholar 

  • Frisch et al. (2004) Gaussian 03, Revision C.01, Wallingford CT.

    Google Scholar 

  • Gibbs G. V. (1982) Molecules as models for bonding in silicates. Am. Mineral. 67, 421-450.

    Google Scholar 

  • Gibbs G. V., Finger L. W., and Boisen M. B. Jr. (1987) Molecular mimicry of the bond length-bond strength variations in oxide crystals. Phys. Chem. Miner. 14, 327-331.

    Article  Google Scholar 

  • Gilijamse J. J., Lock A. J., and Bakker H. J. (2005) Dynamics of confined water molecules. Proceedings of the National Academy of Sciences of the United States of America 102: 3202-3207.

    Article  Google Scholar 

  • Gonzalez C. and Schlegel H. B. (1989) An improved algorithm for reaction path following. J. Phys. Chem. 90, 2154-2161.

    Article  Google Scholar 

  • Gonzalez C. and Schlegel H. B. (1990) Reaction-path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523-5527.

    Article  Google Scholar 

  • Goodman A. L., Bernard E. T., and Grassian V. H. (2001) Spectroscopic study of nitric acid and water adsorption on oxide particles: Enhanced nitric acid uptake kinetics in the presence of adsorbed water. J. Phys. Chem. A 105(26), 6443-6457.

    Article  Google Scholar 

  • Gordon M. S., Binkley S., Pople J. A., Pietro W. J., and Hehre W. J. (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 104, 2797-2803.

    Article  Google Scholar 

  • Grassian V. H. (2001) Heterogeneous uptake and reaction of nitrogen oxides and volatile organic compounds on the surface of atmospheric particles including oxides, carbonates, soot and mineral dust: Implications for the chemical balance of the troposphere. Int. Rev. Phys. Chem. 20, 467-548.

    Article  Google Scholar 

  • Guevremont J. M., Bebie J., Elsetinow A. R., Strongin D. R., and Schoonen M. A. A (1998) Reactivity of the (100) plane of pyrite in oxidizing gaseous and aqueous environments: Effects of surface imperfections. Environ. Sci. Technol. 32, 3743-3748.

    Article  Google Scholar 

  • Halgren T. A. and Lipscomb W. N. (1977) The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 49, 225-232.

    Article  Google Scholar 

  • Hamilton J. P., Brantley S. L., Pantano C. G., Criscenti L., and Kubicki J. D. (2001) Dissolution of nepheline, jadeite and albite glasses: Toward better models for aluminosilicate dissolution. Geochim. Cosmochim. Acta 65, 3683-3702.

    Article  Google Scholar 

  • Hass K. C., Schneider W. F., Curioni A., and Andreoni W. (2000) First-principles molecular dynamics simulations of H2 O on alpha-Al2 O3 (0001). J. Phys. Chem. B 104, 5527-5540.

    Article  Google Scholar 

  • Hellmann R., Eggleston C. M., Hochella M. F., and Crerar D. A. (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions. Nature 350, 488-491.

    Google Scholar 

  • Hellmann R., Penisson J. M., Hervig R. L., Thomassin J. H., and Abrioux M. F. (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: Evidence for interfacial dissolutionreprecipitation. Phys. Chem. Miner. 30, 192-197.

    Article  Google Scholar 

  • Hiemstra T. and van Riemsdijk W. H. (1990) Multiple activated complex dissolution of metal (hydr)oxides—A thermodynamic approach applied to quartz. J. Colloid Interface Sci. 136, 132-150.

    Article  Google Scholar 

  • Hohenberg P. and Kohn W. (1964) Inhomogeneous electron gas. Phys. Rev. B. 136, 864-871.

    Article  Google Scholar 

  • Keith T. A. and Frisch M. J. (1994) Inclusion of explicit solvent molecules in a selfconsistent-reaction field model of solvation. Modeling the Hydrogen Bond. ACS Symposium Series 569, Washington DC, pp. 22-35.

    Google Scholar 

  • Klamt A. and Schuurmann G. (1993) COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and it gradient. J. Chem. Soc. Perkin Trans. 2, 799-805.

    Google Scholar 

  • Kohn W. and Sham L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140(4A), A1133-A1138.

    Article  Google Scholar 

  • Kubicki J. D., Apitz S. E., and Blake G. A. (1997) Molecular orbital calculations for modeling acetate-aluminosilicate adsorption and dissolution reactions. Geochim. Cosmochim. Acta 61, 1031-1046.

    Article  Google Scholar 

  • Kubicki J. D. and Lasaga A. C. (1988) Molecular dynamics simulations of SiO2 melt and glass. Ionic and covalent models. Am. Mineral. 73, 941-955.

    Google Scholar 

  • Kubicki J. D., Xiao Y., and Lasaga A. C. (1993) Theoretical reaction pathways for the formation of [Si(OH)5 ]1− and the deprotonation of orthosilicic acid in basic solution. Geochim. Cosmochim. Acta, 57, 3847-3853.

    Article  Google Scholar 

  • Kubicki J. D., Blake G. A., and Apitz S. E. (1995) G2 theory calculations on [H3 SiO4 ]− , [H4 SiO4 ], [H3 AlO4 ]2− , [H4 AlO4 ]− , and [H5 AlO4 ]: Basis set and elec- tron correlation effects on molecular structures, atomic charges, infrared spectra, and potential energies. Phys. Chem. Miner. 22, 481-488.

    Article  Google Scholar 

  • Kubicki J. D., Itoh M. J., Schroeter L. M., Nguyen B. N., and Apitz S. E. (1999) Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochim. Cosmochim. Acta 63, 2709-2725.

    Article  Google Scholar 

  • Kubicki J. D. (2001) Integral equation formalism polarized continuum model calculations of aqueous Al3+ ,Fe3+ and Si4+ : Correlations of calculated aqueous-phase deprotonation energies with experimental ln(Ka ) and pKa values. J. Phys. Chem. A 105, 8756-8762.

    Article  Google Scholar 

  • Lasaga A. C. (1981) Transition state theory. In: Lasaga A. C. and Kirkpatrick R. J. (ed) Kinetics of Geochemical Processes. Rev Mineral 8. Mineral Society of America, Washington DC, pp. 135-170.

    Google Scholar 

  • Lasaga A. C. and Gibbs G. V. (1990) Ab-initio quantum mechanical calculations of water-rock interactions: Adsorption and hydrolysis reactions. Am. J. Sci. 290, 263-295.

    Google Scholar 

  • Lasaga A. C. (1997) Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NJ, pp. 811.

    Google Scholar 

  • Lee C., Yang W., and Parr R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785-789.

    Article  Google Scholar 

  • Lee S. K. and Stebbins J. F. (2003) O atom sites in natural kaolinite and muscovite: O-17 MAS and 3QMAS NMR study. Am. Mineral. 88, 493-500.

    Google Scholar 

  • Lewan M.D. and Ruble T. E. (2002) Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org. Geochem. 33,1457-1475.

    Article  Google Scholar 

  • Matsumoto M., Saito S., and Ohmine I. (2002) Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409-413.

    Article  Google Scholar 

  • McQuarrie D. A. and Simon J. D. (1997) Physical Chemistry—A Molecular Approach, University Science Books, Sausalito, CA, pp. 1360.

    Google Scholar 

  • Møller C. and Plesset M. S. (1934) Note on an approximation treatment for manyelectron systems. Phys. Rev. 46, 618-622.

    Article  Google Scholar 

  • Parthiban S. and Martin J. M. L. (2001) Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J. Chem. Phys. 114, 6014-6029.

    Article  Google Scholar 

  • Paul K., Kubicki J. D., and Sparks D. L. (2007) Sulfate adsorption at the Fehydroxide-H2 O interface: Comparison of MO/DFT cluster and periodic DFT models. Int. J. Soil Sci. in press.

    Google Scholar 

  • Pelmenschikov A. G., Morosi G., and Gamba A. (1997) Adsorption of water and methanol on silica hydroxyls: Ab initio energy and frequency calculations J. Phys. Chem. A 101 (6), 1178-1187.

    Article  Google Scholar 

  • Pelmenschikov A., Strandh H., Pettersson L. G. M., and Leszczynski J. (2000) Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals: Ab initio calculations of a single water attack onto the (001) and (111) beta-cristobalite surfaces. J. Phys. Chem. B 104 (24), 5779-5783.

    Article  Google Scholar 

  • Pelmenschikov A., Leszczynski J., and Petterson L. G. M. (2001) Mechanism of dissolution of neutral silica surfaces: Including effect of self-healing. J. Phys. Chem. A 105, 9528-8532.

    Article  Google Scholar 

  • Peng C. and Schlegel H. B. (1994) Combining synchronous transit and quasinewton methods for finding transition states. Israel J Chem. 33, 449-454.

    Google Scholar 

  • Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868.

    Article  Google Scholar 

  • Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shirley W. A., and Mantzaris J. (1988) A complete basis set model chemistry.1. The total energies of closed-shell atoms and hydrides of the 1st -row elements. J. Chem. Phys. 89, 2193-2218.

    Article  Google Scholar 

  • Phillips B. L., Tossell J. A., and Casey W. H. (1998) Experimental and theoretical treatment of elementary ligand exchange reactions in aluminum complexes. Environ. Sci. Technol. 32, 2865-2870.

    Article  Google Scholar 

  • Prince A.P., Wade J. L., Grassian V. H., Kleiber P. D., and Young M. A. (2002) Heterogeneous reactions of soot aerosols with nitrogen dioxide and nitric acid: Atmospheric chamber and Knudsen cell studies. Atmos. Environ. 36, 5729-5740.

    Article  Google Scholar 

  • Reedy B. J., Beattie J. K., and Lowson R. T. (1991) A vibrational spectroscopic O-18 tracer study of pyrite oxidation. Geochim. Cosmochim. Acta 55, 1609-1614.

    Article  Google Scholar 

  • Richnow H. H., Seifert R., Hefter J., Kastner M., Mahro B., and Michaelis W. (1994) Metabolites of xenobiotica and mineral-oil constituents linked to macromolecular organic-matter in polluted environments. Org. Geochem. 22, 671-681.

    Article  Google Scholar 

  • Rimstidt J. D. and Barnes H. L. (1980) The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44, 1683-1699.

    Article  Google Scholar 

  • Rosso K. M. (2001) Structure and reactivity of semiconducting mineral surfaces: Convergence of molecular modeling and experiment. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society, pp. 199-271.

    Google Scholar 

  • Rosso K. M. and Rustad J. R. (2001) Structures and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations. Am. Mineralog. 86, 312-317.

    Google Scholar 

  • Schlegel H. B. (1987) Optimization of equilibrium geometries and transition structures. Adv. Chem. Phys. 67, 249-286.

    Article  Google Scholar 

  • Schoonen M. A. A., Xu Y., and Strongin D. R. (1998) An introduction to geocatalysis. J. Geochem. Explor. 62, 201-215.

    Article  Google Scholar 

  • Schoonen M. A. A. and Strongin D. R. (2005) Catalysis of electron transfer reactions at mineral surfaces. In Environmental Catalysis, V. H. Grassian (ed), Taylor & Francis/CRC Press, Boca Raton, FL, pp. 37-60.

    Google Scholar 

  • Sherman D. M. (2001) Quantum chemistry and classical simulations of metal complexes in aqueous solutions. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society, pp. 273-317.

    Google Scholar 

  • Shoemaker J. R., Burggraf L. W., and Gordon M. S. (1999) SIMOMM: An integrated molecular orbital/molecular mechanics optimization scheme for surfaces. J. Phys. Chem. A 103, 3245-3251.

    Article  Google Scholar 

  • Stefanovich E. V. and Truong T. N. (1997) A theoretical approach for modeling reactivity at solid-liquid interfaces. J. Chem. Phys. 106, 7700-7705.

    Article  Google Scholar 

  • Stewart J. J. P. (2004) Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. J. Mol. Model. 10, 6-12.

    Article  Google Scholar 

  • Stixrude L. (2001) First principles theory of mantle and core phases. In Molecular Modeling Theory: Applications in the Geosciences, Reviews in Mineralogy and Geochemistry 42, R. T. Cygan and J. D. Kubicki (eds.) Geochemical Society, pp. 319-343.

    Google Scholar 

  • Stixrude L. and Peacor D. R. (2002) First-principles study of illite-smectite and implications for clay mineral systems. Nature, 420, 165-168.

    Article  Google Scholar 

  • Suarez D.L. and Wood J.D. (1996) Short- and long-term weathering rates of a feldspar fraction isolated from an arid zone soil. Chem. Geolog. 132, 143-150.

    Article  Google Scholar 

  • Sykes D., Kubicki J. D., and Farrar T. C. (1997) Molecular orbital calculation of 27 Al and 29 Si NMR parameters in Q3 and Q4 aluminosilicate molecules and implications for the interpretation of hydrous aluminosilicate glass NMR spectra. J. Phys. Chem. A 101, 2715-2722.

    Article  Google Scholar 

  • Taylor B.E., Wheeler M.C., and Nordstrom D.K. (1984) Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochim. Cosmochim. Acta 48, 2669-2678.

    Article  Google Scholar 

  • Tsomaia N., Brantley S. L., Hamilton J. P., Pantano C. G., and Mueller K. T. (2003) NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal. Am. Mineralog. 88, 54-67.

    Google Scholar 

  • Usher C. R., Paul K. W., Narayansamy J., Kubicki J. D., Sparks D. L., Schoonen M. A. A., and Strongin D. R. (2005) Aspects of pyrite oxidation in an oxidizing gaseous environment: An in situ HATR-IR isotope study. Environ. Sci. Technol. 39 (19): 7576-7584.

    Article  Google Scholar 

  • Van Alsenoy C., Yu C. H., Peeters A., Martin J. M. L., and Schafer L. (1998) Ab initio geometry determinations of proteins. 1. Crambin. J. Phys. Chem. A 102, 2246-2251.

    Article  Google Scholar 

  • Wang S. H., Ackermann R., Spicer C. W., Fast J. D., Schmeling M., and Stutz J. (2003) Atmospheric observations of enhanced NO2 -HONO conversion on mineral dust particles. Geophys. Res. Lett. 30: Art. no. 1595.

    Article  Google Scholar 

  • White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geolog. 202, 479-506.

    Article  Google Scholar 

  • Windus T. L., Bylaska E. J., Dupuis M., Hirata S., Pollack L., Smith D. M., Straatsma T. P., and Apra E. (2003) NWChem: New functionality. Lecture Notes in Computer Science 2660, 168-177.

    Article  Google Scholar 

  • Wong M. W. (1996) Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 256 (4-5), 391-399.

    Article  Google Scholar 

  • Xiao Y. T. and Lasaga A. C. (1994) Ab-initio quantum-mechanical studies of the kinetics and mechanisms of silicate dissolution - H+ (H3 O+ ) catalysis. Geochim. Cosmochim. Acta 58, 5379-5400.

    Article  Google Scholar 

  • Xiao Y. T. and Lasaga A. C. (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH-catalysis. Geochim. Cosmochim. Acta 60, 2283-2295.

    Article  Google Scholar 

  • Xu Y., Schoonen M. A. A., and Strongin D. R. (1996) Thiosulfate oxidation: Catalysis of synthetic sphalerite doped with transition metals. Geochim. Cosmochim. Acta 60, 4701-4710.

    Article  Google Scholar 

  • Yu P., Lee A. P., Phillips B. L., and Casey W. H. (2003) Potentiometric and F-19 nuclear magnetic resonance spectroscopic study of fluoride substitution in the GaAl12 polyoxocation: Implications for aluminum (hydr)oxide mineral surfaces. Geochim. Cosmochim. Acta 67, 1065-1080.

    Article  Google Scholar 

  • Zhang Z., Fenter P., Kelly S. D., Catalano J. G., Bandura A. V., Kubicki J. D., Sofo J. O., Wesolowski D. J., Machesky M. L., Sturchio N. C., and Bedzyk M. J. (2006) Structure of hydrated Zn2+ at the rutile TiO2 (110)-aqueous solution interface: Comparison of X-ray standing wave, X-ray absorption spectroscopy, and density functional theory results, Geochim. Cosmochim. Acta 70, 4039-4056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kubicki, J. (2008). Transition State Theory and Molecular Orbital Calculations Applied to Rates and Reaction Mechanisms in Geochemical Kinetics. In: Brantley, S., Kubicki, J., White, A. (eds) Kinetics of Water-Rock Interaction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73563-4_2

Download citation

Publish with us

Policies and ethics