Isotope Geochemistry as a Tool for Deciphering Kinetics of Water-Rock Interaction

  • Jérôme Gaillardet

What have isotopes added to our understanding of the kinetics of water-rock interaction processes at the surface of the Earth? Since the development of routine techniques of mass spectrometry, an impressive number of studies have used isotopes to constrain water-rock interaction processes. A number of these initial studies were not purposefully designed to determine the kinetics of water-rock interaction, but they demonstrated that isotopic kinetic effects were both sufficiently large and specific so that they could be used to constrain the kinetics of water-rock interactions. Here we provide a brief synthesis of the different approaches where isotopes have been applied to constrain the rates and timescales of water-rock interaction. We have adopted a very broad definition of the word “kinetics” for this review and have not limited the studies to reaction rates of particular reactions. Because most of the reactions occurring at the Earth’s surface are occurring at low temperatures, they do not proceed rapidly enough to reach thermodynamic equilibrium; therefore, we face the problem of determining the rates at which they proceed. Physical processes, such as climate variability, glacier dynamics, landsliding and tectonic processes often proceed more rapidly than chemical weathering reactions. For example, mineral weathering and the subsequent formation of secondary minerals in soils occurs over timescales on the order of tens to hundreds of thousands of years, while the characteristic timescales of climate variability are much shorter. Isotopic approaches have proven to be very powerful in constraining rates of water-rock interaction in natural systems, where physical and chemical processes are inevitably coupled.


Isotopic Composition Isotopic Ratio Oceanic Crust Isotope Geochemistry Mineral Dissolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach W. and Humphris S. E. (1999) Relationships between Sr and O isotope composition of hydrothermal fluids and the spreading and magma-supply rates of oceanic spreading centers. Geology 27(12), 1067-1070.Google Scholar
  2. Bath S. G., Khrishnaswami S., Lal D., Rama, and More W. S. (1969) 234Th /238U ratios in the ocean. Earth and Planetary Science Letters 5, 483-491.Google Scholar
  3. Baxter E. F. and DePaolo D. J. (2002a) Field measurement of high temperature bulk reaction rates I: Theory and technique. American Journal of Science 302, 442-464.Google Scholar
  4. Baxter E. F. and DePaolo D. J. (2002b) Field measurement of high temperature bulk reaction rates II: Interpretation of results from a field site near Simplon Pass, Switzerland. American Journal of Science 302, 465-516.Google Scholar
  5. Beard B. L., Johnson, C. M., Skulan, J. L., Nealson, K. H., Cox L., and Sun H. (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 195, 87-117.Google Scholar
  6. Beck J. W., Berndt M. E., and Seyfried J. W. E. (1992) Application of isotopic doping techniques to evaluation of reaction kinetics and fluid/mineral distribution coefficients: An experimental study of calcite at elevated temperatures and pressures. Chemical Geology 97(1-2), 125.Google Scholar
  7. Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton, NJ.Google Scholar
  8. Bickle M. J. (1992) Transport mechanisms by fluid-flow in metamorphic rocks: Oxygen and strontium decoupling in the Trois Seigneurs Massif - a consequence of kinetic dispersion? American Journal of Science 292(5), 289.Google Scholar
  9. Bickle M. J. and Teagle D. A. H. (1992) Strontium alteration in the Troodos ophiolite: Implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. Earth and Planetary Science Letters 113, 219-237.Google Scholar
  10. Bierman P. R. and Steig E. J. (1996) Estimating rates of denudation using cosmogenic isotopes abundances in sediment. Earth Surface Processes and Landforms 21,121-139.Google Scholar
  11. Blattner P. and Lassey K. R. (1989) Stable-isotope exchange fronts, Damk öhler numbers, and fluid to rock ratios. Chemical Geology 78, 381-392.Google Scholar
  12. Blum J. D. and Erel Y. (1995) A silicate weathering mechanism linking increases in marine Sr/Sr with global glaciation. Nature 373(6513), 415.Google Scholar
  13. Blum J. D. and Erel Y. (1997) Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochimica et Cosmochimica Acta 61 (15),3193.Google Scholar
  14. Blum J. D., Erel Y., and Brown K. (1993) 87Sr/86Sr ratios of Sierra Nevada stream waters: Implications for relative mineral weathering rates. Geochimica et Cosmochimica Acta 57(21-22), 5019.Google Scholar
  15. Bottinga Y. (1968) Calculation of fractionation factor for C and O isotope exchange in the system caclite-carbon dioxide-water. Journal of Physical Chemistry 72(3), 800-808.Google Scholar
  16. Bourdon B., Henderson G. M., Lundstrom C. C., and Turner S. P. (2003) Uraniumseries geochemistry. Reviews in Mineralogy and Geochemistry 52.Google Scholar
  17. Brantley S. L., Chesley J. T., and Stillings L. L. (1998) Isotopic ratios and release rates of strontium measured from weathering feldspars. Geochimica et Cosmochimica Acta 62(9), 1493.Google Scholar
  18. Brantley S. L., Liermann L., and Bullen T. D. (2001) Fractionation of Fe isotopes by soil microbes and organic acids. Geology 29(6), 535.Google Scholar
  19. Brantley S. L., Liermann L. J., Guynn R. L., Anbar A., Icopini G. A., and Barling J. (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochimica et Cosmochimica Acta 68(15), 3189.Google Scholar
  20. Broecker W. S., Kaufman A., and Trier R. M. (1973) The residence time of thorium in surface seawater and its implications regarding the fate of reactive pollutants. Earth and Planetary Science Letters 20, 35-44.Google Scholar
  21. Brown E. T., Colin F., and Bourles D. L. (2003) Quantitative evaluation of soil processes using in situ-produced cosmogenic nuclides. Comptes Rendus Geosciences 335(16), 1161.Google Scholar
  22. Brown E. T., Stallard R. F., Larsen M. C., Raisbeck G. M., and Yiou F. (1995) Denudation rates determined from the accumulation of in situ-produced 10Be in the Luquillo experimental forest, Puerto Rico. Earth and Planetary Science Letters 129(1-4), 193.Google Scholar
  23. Buesseler K. O., Andrews J. A., Hartman M. C., Belastock R., and Chai F. (1995) Regional estimates of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS EqPac program. Deep Sea Research Part II: Topical Studies in Oceanography 42(2-3), 777.Google Scholar
  24. Bullen T., White A., Blum A., Harden J., and Schulz M. (1997) Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium. Geochimica et Cosmochimica Acta 61 (2),291.Google Scholar
  25. Bullen T. D., Krabbentoft D. P., and Kendall C. (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87 Sr/86 Sr in a sandy silicate aquifer, Northern Wisconsin, USA. Geochilica et Cosmochimica Acta 60, 1807-1821.Google Scholar
  26. Chabaux F., Cohen A. S., Onions R. K., and Hein J. R. (1995) 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater. Geochimica et Cosmochimica Acta 59(3), 633.Google Scholar
  27. Chabaux F., Riotte J., and Dequincey O. (2003) Uranium-series geochemistry: U-Th-Ra fractionation during weathering and river transport. Reviews in Mineralogy and geochemistry 52, 533-576.Google Scholar
  28. Chacko T, Cole D. R., and Horita J. (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geological systems. Reviews in Mineralogy and Geochemistry 43, 1-82.Google Scholar
  29. Christensen J. N., Rosenfeld J. L., and DePaolo D. J. (1989) Rates of tectonometamorphism processes from Rubidium and Strontium isotopes in Garnet. Science 244,1465-1469.Google Scholar
  30. Chu X. and Ohmoto H. (1991) Kinetic of isotope exchange reactions involving intra-and intermolecular reactions: I. Rate law for a system with two chemical compounds and three exchangeable atoms. Geochimica et Cosmochimica Acta 55, 1953-1961.Google Scholar
  31. Chu X., Ohmoto H., and Cole D. R. (2004) Kinetics of sulfur isotope exchange between aqueous sulfide and thiosulfate involving intra-and intermolecular reactions at hydrothermal conditions. Chemical Geology 211(3-4), 217.Google Scholar
  32. Cochran J. K. and Masqu é P. (2003) U-series geochemistry: Short-lives U/Th series radionuclides in the ocean: Tracers for scavenging rates, export fluxes and particles dynamics. Reviews in Mineralogy and geochemistry 52, 461-492.Google Scholar
  33. Cole D. R. and Chakraborty S. (2001) Rates and mechanisms of isotopic exchange. Stable Isotope Geochemistry, Reviews in Mineralogy and geochemistry 43, 83-223.Google Scholar
  34. Cole D. R., Mottl M. J., and Ohmoto H. (1987) Isotopic exchange in mineralfluid systems. II. Oxygen and hydrogen isotopic investigation of the experimental basalt-seawater system. Geochimica et Cosmochimica Acta 51(6), 1523.Google Scholar
  35. Cole D. R. and Ohmoto H. (1986) Kinetics of isotopic exchange at elevated temperatures. Stable Isotope in High Temperature Geological Processes, Reviews in Mineralogy 16, 40-90.Google Scholar
  36. Cole D. R., Ohmoto H., and Jacobs G. K. (1992) Isotopic exchange in mineral-fluid systems: Rates and mechanisms of oxygen isotope exchange in the system granite ±H2O ± NaCl ± KCl at hydrothermal conditions. Geochimica et Cosmochimica Acta 56, 445-466.Google Scholar
  37. Cole D. R., Ohmoto H., and Lasaga A. C. (1983) Isotopic exchange in mineral-fluid systems. I. Theoretical evaluation of oxygen isotopic exchange accompanying surface reactions and diffusion. Geochimica et Cosmochimica Acta 47(10), 1681.Google Scholar
  38. Criss R. E., Gregory R. T., and Taylor J. H. P. (1987) Kinetic theory of oxygen isotopic exchange between minerals and water. Geochimica et Cosmochimica Acta 51 (5),1099.Google Scholar
  39. Dandurand J. L., Gout R., Hoefs J., Menschel G., Schott J., and Usdowski E. (1982) Kinetically controlled variations of major components and carbon and oxygen isotopes in a calcite-precipitating spring. Chemical Geology 36(3-4), 299.Google Scholar
  40. DePaolo D. J. (2006) Isotopic effects in fracture-dominated reactive fluid-rock systems. Geochimica et Cosmochimica Acta 70, 1077-1096.Google Scholar
  41. Dequincey O., Chabaux F., Clauer N., Sigmarsson O., Liewig N., and Leprun J. C. (2002) Chemical mobilizations in laterites: Evidence from trace elements and 238U-234U-230Th disequilibria. Geochimica et Cosmochimica Acta 66(7), 1197.Google Scholar
  42. Derry L. A. and France-Lanord C. (1996) Neogene Himalayan weathering history and river 87Sr/86Sr: Impact on the marine Sr record. Earth and Planetary Science Letters 142(1-2), 59.Google Scholar
  43. Doremus R. H. (1998) Diffusion of water and oxygen in quartz: Reaction-diffusion model. Earth and Planetary Science Letters 163(1-4), 43.Google Scholar
  44. Dosseto A., Bourdon B., Gaillardet J., Allegre C. J., and Filizola N. (2005) Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series. Geochimica et Cosmochimica Acta, 69(14), 3519-3533.Google Scholar
  45. Dosseto A., Bourdon B., Gaillardet J., Maurice-Bourgoin L. and Allegre C. J. (2006) Weathering and transport of sediments in the Bolivian Andes: Time constraints from U-series isotopes. Earth and Planetary Science Letters 248(3-4), 759-771.Google Scholar
  46. Dubinina E. O. and Lakshtanov L. Z. (1997) A kinetic model of isotopic exchange in dissolution-precipitation processes. Geochimica et Cosmochimica Acta 61(11), 2265.Google Scholar
  47. Erel Y., Blum J. D., Roueff E., and Ganor J. (2004) Lead and strontium isotopes as monitors of experimental granitoid mineral dissolution. Geochimica et Cosmochimica Acta 68(22), 4649-4663.Google Scholar
  48. Erel Y., Harlavan Y., and Blum J. D. (1994) Lead isotope systematics of granitoid weathering. Geochimica et Cosmochimica Acta 58(23), 5299.Google Scholar
  49. Erez J. (1978) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273(5659), 199.Google Scholar
  50. Faure G. and Mensing T. M. (2005) Isotope principles and applications. Third Edition. John Wiley & Sons, NJ.Google Scholar
  51. Gannoun A., Burton, K. W., Vigier N., Gislason S. R., Rogers N., Mokadem F., and Sigfusson B. (2006) The influence of weathering process on riverine osmium isotopes in a basaltic terrain. Earth and Planetary Science Letters 243, 732-748.Google Scholar
  52. Gee A. K. and Bruland K. W. (2002) Tracing Ni, Cu, and Zn kinetics and equilibrium partitioning between dissolved and particulate phases in South San Francisco Bay, California, using stable isotopes and high-resolution inductively coupled plasma mass spectrometry. Geochimica et Cosmochimica Acta 66(17), 3063.Google Scholar
  53. Gehlen M., Mucci A., and Boudreau B. (1999) Modelling the distribution of stable carbon isotopes in porewaters of deep-sea sediments. Geochimica et Cosmochimica Acta 63, 2763-2773.Google Scholar
  54. Gosse J. C. and Phillips F. M. (2001) Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews 20(14), 1475.Google Scholar
  55. Granger D. E., Kirchner J. W., and Finkel R. (1996) Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. Journal of Geology 104(3), 249.Google Scholar
  56. Gregory R. T. and Criss R. E. (1986) Stable isotopes in high temperature geolical processes: Isotopic exchange in open and closed systems. Reviews in Mineralogy 16,91-126.Google Scholar
  57. Gregory R. T. and Taylor H. P. (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: Evidence for [delta] O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research 86(B4), 2737.Google Scholar
  58. Harlavan Y. and Erel Y. (2002) The release of Pb and REE from granitoids by the dissolution of accessory phases. Geochimica et Cosmochimica Acta 61, 291-306.Google Scholar
  59. Harlavan Y., Erel Y., and Blum J. D. (1998) Systematic changes in lead isotopic composition with soil age in glacial granitic terrains. Geochimica et Cosmochimica Acta 62(1), 33.Google Scholar
  60. Henderson G. M. and Anderson R. F. (2003) Uranium-series geochemistry: The U-series toolbox for paleoceanography. Reviews in Mineralogy and Geochemistry 52,493-531.Google Scholar
  61. Hilaire-Marcel C., Valli ères S., Ghaleb B., and Mareschal J. C. (1990) D és équilibres Th-U dans les sols carbonat és en climat subaride: Estimation des flux d’uranium et vitesse d’ érosion. Le cas du Bassin de Palmyre, Syrie. C. R. Acad. Sci. Paris, s érie IIa 311, 233-238.Google Scholar
  62. Houssein I., Michard G., and Dupre B. (1993) Interaction eau-roche au voisinage de l’ équilibre: Utilisation simultan ée des él éments majeursn des él éments traces et des isotopes. C. R. Acad. Sci. Paris, s érie II t. 316, 77-83.Google Scholar
  63. Johnson C. M., Beard B. L., and Albar ède F. (2004) Geochemistry of non-traditional stable isotopes: Overview and general concepts. Reviews in Mineralogy and geochemistry 55, 1-24.Google Scholar
  64. Johnson T. M. and DePaolo D. J. (1994) Interpretation of isotopic data in groundwater-rock systems: Model development and application to Sr isotope data from Yucca Mountain. Water Resources Research 30(5), 1571-1587.Google Scholar
  65. Johnson T. M. and DePaolo D. J. (1997a) Rapid exchange effects on isotope ratios in groundwater systems 1. Development of a transport-dissolution-exchange model. Water Resources Research 33(1), 187-195.Google Scholar
  66. Johnson T. M. and DePaolo D. J. (1997b) Rapid exchange effects on isotope ratios in groundwater systems 2. Flow investigation using Sr isotopes. Water Resources Research 33, N◦ 1, 197-2009.Google Scholar
  67. Kim S.-T. and O’Neil J. R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61(16), 3461. Labotka T. C., Cole D. R., and Riciputi L. R. (2000) Diffusion of C and O in calcite at 100 MPa. American Mineralogist 85, 488-494.Google Scholar
  68. Lal D. (1991) Cosmic ray labelling of erosion surfaces: In situ production rates and erosion models. Earth and Planetary Science Letters 104, 424-439.Google Scholar
  69. Lassey K. R. and Blattner P. (1988) Kinetically controlled oxygen isotope exchange between fluid and rock in one-dimensional advective flow. Geochimica et Cosmochimica Acta 52(8), 2169.Google Scholar
  70. Lecuyer C. and Allemand P. (1999) Modelling of the oxygen isotope evolution of seawater: Implications for the climate interpretation of the [delta]18O of marine sediments. Geochimica et Cosmochimica Acta 63(3-4), 351.Google Scholar
  71. Lecuyer C., Gillet P., and Robert F. (1998) The hydrogen isotope composition of seawater and the global water cycle. Chemical Geology 145(3-4), 249.Google Scholar
  72. Lemarchand D., Gaillardet J., Lewin E., and Allegre C. J. (2001) The influence of rivers on marine B isotopes and implications for reconstructing past ocean pH. Nature 408(6815), 951.Google Scholar
  73. Lemarchand D., Wasserburg G. J., and Papanastassiou D. A. (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochimica et Cosmochimica Acta 68(22), 4665.Google Scholar
  74. Lemarchand E., Schott J., and Gaillardet J. (2005) Boron isotopic fractionation related to boron sorption on humic acids and the structure of the surface complexes formed. Geochimica et Cosmochimica Acta 69(14), 3519.Google Scholar
  75. Lemarchand D. and Gaillardet J. (2006) Transient features of the erosion of shales in the Mackenzie basin (Canada), evidences from B isotopes. Earth and Planetary Science Letters 245, 174-189.Google Scholar
  76. Luo S., Ku T.-L., Roback R., Murrell M., and McLing T. L. (2000) In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): Decay-series disequilibrium studies. Geochimica et Cosmochimica Acta 64(5), 867-881.Google Scholar
  77. Maher K., DePaolo D. J., Conrad M. E., and Sterne R. J. (2003) Vadose infiltration rate at Hanford, Washington, inferred from Sr isotope measurements. Water Resources Research, 39, 1204.Google Scholar
  78. Maher K., DePaolo D. J., and Lin J. C.-F. (2004) Rates of silicate dissolution in deep-sea sediment: In situ measurement using 234U/238U of pore fluids. Geochimica et Cosmochimica Acta 68(22), 4629.Google Scholar
  79. Maher K., DePaolo D. J., and Christensen J. N. (2006a) U-Sr isotopic speedometer: Fluid flow and chemical weathering rates in aquifers. Geochimica et Cosmochimica Acta 70(17), 4417-4435.Google Scholar
  80. Maher K., Steefel C. I., DePaolo D. J., and Viani B. E. (2006b) The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochimica et Cosmochimica Acta 70 (2),337-363.Google Scholar
  81. Matsumoto E. (1975) 234Th-238U radioactive disequilibrium in the surface layer of the oceans. Geochimica et Cosmochimica Acta 39, 205-212.Google Scholar
  82. McConnaughey T. (1989a) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53(1), 151.Google Scholar
  83. McConnaughey T. (1989b) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta 53(1), 163.Google Scholar
  84. Michaelis J., Usdowski E., and Menschel G. (1985) Partitioning of C and C on the degassing of CO2 and the precipitation of calcite - Rayleigh-type fractionation and a kinetic model. American Journal of Science 285(4), 318.Google Scholar
  85. Mickler P. J., Banner J. L., Stern L., Asmerom Y., Edwards R. L., and Ito E. (2004) Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects. Geochimica et Cosmochimica Acta 68(21), 4381.Google Scholar
  86. Muehlenbachs K. and Clayton R. N. (1976) Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research 81 (23),4365.Google Scholar
  87. O’Neil J. R. (1986) Theoretical and experimental aspects of isotopic fractionation. Stable Isotopes in High Temperature Geological Processes, Published by Mineralogical Society of America; Reviews in Mineralogy, Editor Valley J. W. 16, 1-40.Google Scholar
  88. Ohmoto H. and Lasaga A. C. (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta 46(10), 1727.Google Scholar
  89. Palmer M. R., Spivack A. J., and Edmond J. M. (1987) Temperature and pH controls over isotopic fractionation during adsorption of B on marine clay. Geochimica et Cosmochimica Acta 51, 2319-2323.Google Scholar
  90. Richet P., Bottinga Y., and Javoy M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulfur and chlorine stable isotope fractionation among gaseous molecules. Annual Review of Earth and Planetary Sciences 5, 65-110.Google Scholar
  91. Richter F. M. and DePaolo D. J. (1987) Numerical models for diagenesis and the Neogene Sr isotopic evolution of seawater from DSDP Site 590B. Earth and Planetary Science Letters 83(1-4), 27.Google Scholar
  92. Richter F. M. and DePaolo D. J. (1988) Diagenesis and Sr isotopic evolution of seawater using data from DSDP 590B and 575. Earth and Planetary Science Letters 90(4), 382.Google Scholar
  93. Richter F. M., Rowley D. B., and DePaolo D. J. (1992) Sr isotope evolution of seawater: The role of tectonics. Earth and Planetary Science Letters 109, 11-23.Google Scholar
  94. Richter F. M. and Turekian K. K. (1993) Simple models for the geochemical response of the ocean to climatic and tectonic forcing. Earth and Planetary Science Letters 119(1-2), 121.Google Scholar
  95. Riebe C. S., Kirchner J. W., Granger D. E., and Finkel R. (2001) Strong tectonic and weak climatic control of long-term chemical weathering. Geology 29(6), 511-514.Google Scholar
  96. Riebe C. S., Kirchner J. W., Granger D. E., and Finkel R. C. (2000) Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic Al and Be in alluvial sediment. Geology 28(9), 803.Google Scholar
  97. Rollion-Bard C., Chaussidon M., and France-Lanord C. (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth and Planetary Science Letters 215(1-2), 275.Google Scholar
  98. Romanek C. S., Grossman E. L., and Morse J. W. (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56(1), 419.Google Scholar
  99. Sarda P., Staudacher T., Allegre C. J., and Lecomte A. (1993) Cosmogenic neon and helium at Reunion: Measurement of erosion rate. Earth and Planetary Science Letters 119(3), 405.Google Scholar
  100. Schaller M., von Blanckenburg F., Hovius N., and Kubik P. W. (2001) Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters 188(3-4), 441.Google Scholar
  101. Scott R. D., MacKenzie A. B., and Alexander W. R. (1992) The interpretation of 238U-234U-230Th-226Ra disequilibria produced by rock-water interactions. Journal of Geochemical Exploration 45(1-3), 323.Google Scholar
  102. Seimbille F., Zuddas P., and Michard G. (1998) Granite-hydrothermal interaction: A simultaneous estimation of the mineral dissolution rate based on the isotopic doping technique. Earth and Planetary Science Letters 157(3-4), 183.Google Scholar
  103. Singleton M. J., Maher K., DePaolo D. J., Conrad M. E., and Evan Dresel P. (2006) Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer. Journal of Hydrology 321 (1-4), 39-58.Google Scholar
  104. Skulan J. L., Beard B. L., and Johnson C. M. (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochimica et Cosmochimica Acta 66(17), 2995.Google Scholar
  105. Spero H. J. and Lea D. W. (1996) Experimental determination of stable isotope variability in Globigerina bulloides: Implications for paleoceanographic reconstructions. Marine Micropaleontology 28(3-4), 231.Google Scholar
  106. Stakes D. S. and Taylor Jr H. P. (1992) The northern Samail Ophiolite: An oxygen isotope, microprobe, and field study. Journal of Geophysical Research 97(B5), 7043.Google Scholar
  107. Taylor A. S., Blum J. D., Lasaga A. C., and MacInnis I. N. (2000) Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochimica et Cosmochimica Acta 64(7), 1191.Google Scholar
  108. Taylor H. P. J. (1977) Water/rock interaction and the origin of H2O in granitic batholiths. Journal of the Geological Society of London 133, 509-558.Google Scholar
  109. Teagle D. A. H., Bickle M. J., and Alt J. C. (2003) Recharge flux to ocean-ridge black smoker systems: A geochemical estimate from ODP Hole 504B. Earth and Planetary Science Letters 210(1-2), 81.Google Scholar
  110. Thiel K., Vorwerk R., Saager R., and Stupp H. D. (1983) 235U fission tracks and 238U-series disequilibria as a means to study recent mobilization of uranium in Archaean pyritic conglomerates. Earth and Planetary Science Letters 65(2), 249.Google Scholar
  111. Tricca A., Porcelli D., and Wasserburg G. J. (2000) Factors controlling the ground-water transport of U, Th, Ra and Rn. In Gopalan Festschrift Volume (ed. Rao Y. J. B. et al.), 109 (Proceedings of the Indian Academy of Science).Google Scholar
  112. Tricca A., Wasserburg G. J., Porcelli D., and Baskaran M. (2001) The transport of U-and Th-series nuclides in a sandy unconfined aquifer. Geochimica et Cosmochimica Acta 65(8), 1187.Google Scholar
  113. Turner J. V. (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochimica et Cosmochimica Acta 46(7), 1183.Google Scholar
  114. Urey H. C. (1947) The thermodynamics properties of isotopic substances. Journal of Chemical Society (London), 562-581.Google Scholar
  115. Usdowski E., Hoefs J., and Menschel G. (1979) Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring — A model of chemical variations with inorganic CaCO3 precipitation. Earth and Planetary Science Letters 42(2), 267.Google Scholar
  116. Vance D. and O’Nions R. K. (1990) Isotopic chronometry of zoned garnets: Growth kinetics and metamorphic histories. Earth and Planetary Science Letters 97(3-4), 227.Google Scholar
  117. Vigier N., Bourdon B., Lewin E., Dupre B., Turner S., Chakrapani G. J., van Calsteren P., and Allegre C. J. (2005) Mobility of U-series nuclides during basalt weathering: An example from the Deccan Traps (India). Chemical Geology 219 (1-4), 69.Google Scholar
  118. Vigier N., Bourdon B., Turner S., and Allegre C. J. (2001) Erosion timescales derived from U-decay series measurements in rivers. Earth and Planetary Science Letters 193(3-4), 549.Google Scholar
  119. von Blanckenburg F. (2005) The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth and Planetary Science Letters 237(3-4), 462.Google Scholar
  120. Welch S. A., Beard B. L., Johnson C. M., and Braterman P. S. (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochimica et Cosmochimica Acta 67(22), 4231.Google Scholar
  121. White A. F., Blum A. E., and Bullen T. D. (1992) A three million year weathering record for a soil chronosequence developed in granitic alluvium, Merced, California, USA. In: Kharaka Y.K. and Maest A. S., Editors, Proceedings of the 7th International Symposium of Water-Rock Interaction, Balkema (1992), pp. 607-610.Google Scholar
  122. White A. F., Blum A. E., Schulz M. S., Bullen T. D., Harden J. W., and Peterson M. L. (1996) Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochimica et Cosmochimica Acta 60(14), 2533.Google Scholar
  123. Zuddas P., Seimbille F., and Michard G. (1995) Granite-fluid interaction at nearequilibrium conditions: Experimental and theoretical constraints from Sr contents and isotopic ratios. Chemical Geology 121(1-4), 145.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jérôme Gaillardet
    • 1
  1. 1.Institut de Physique du Globe de ParisUniversité Paris-Diderot - CNRSFrance

Personalised recommendations