Geochemical Kinetics and Transport

  • Carl I. Steefel

The kinetics of geochemical and biogeochemical processes can be studied in isolation in the laboratory, but only rarely is it possible to separate these processes from those of transport when considering their importance in natural systems at the field scale. This is because the driving force for most reactions of interest in water—rock interaction is transport. The most intense geochemical and biogeochemical activity occurs at the interface between global compartments like the oceans, the atmosphere, and the Earth’s crust where elemental and nutrient fluxes provide the maximum driving force for reactions to take place. The important role of transport in these settings makes it critical to consider these time-dependent processes in conjunction with those processes we think of as more purely biogeochemical. In other words, these global interfaces are open systems, where both mass and energy transfers must be accounted for.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aris R. (1956) On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society London Series A 235, 67-77.CrossRefGoogle Scholar
  2. Bahr J. M. and Rubin J. (1987) Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions. Water Resources Research 23(3), 438-452.CrossRefGoogle Scholar
  3. Bear J. (1972) Dynamics of Fluids in Porous Media. Dover Publications, Inc., NY.Google Scholar
  4. Berner R. A. (1980) Early Diagenesis: A Theoretical Approach. Princeton University Press, NJ.Google Scholar
  5. Bethke C. M. and Johnson T. M. (2002) Paradox of groundwater age. Geology 30(2), 107-110.CrossRefGoogle Scholar
  6. Boudreau B. P. (1997) Diagenetic Models and Their Implementation. SpringerVerlag, Heidelberg NY.Google Scholar
  7. Boyce W. E. and DiPrima R. C. (1986) Elementary Differential Equations and Boundary Value Problems. John Wiley & Sons, NY.Google Scholar
  8. Dagan G. (1988) Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resources Research 24, 1491-1500.CrossRefGoogle Scholar
  9. Dagan G. (1989) Flow and transport in porous formations. Springer-Verlag, Heidelberg NY.Google Scholar
  10. Darcy H. (1856) Les fontaines publiques de la ville de Dijon. Dalmont, Paris.Google Scholar
  11. Daugherty R. L. and Franzini J. B. (1965) Fluid Mechanics with Engineering Applications. McGraw-Hill, NY.Google Scholar
  12. Denbigh K. (1981) The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge.Google Scholar
  13. Gelhar L. W. (1986) Stochastic subsurface hydrology from theory to applications. Water Resources Research 22, 135S-145S.CrossRefGoogle Scholar
  14. Gelhar L. W. (1993) Stochastic Subsurface Hydrology. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  15. Gelhar L. W. and Axness C. L. (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resources Research 19(1), 161-180.CrossRefGoogle Scholar
  16. Gelhar L. W., Welty C., and Rehfeldt K. R. (1992) A critical-review of data on field-scale dispersion in aquifers. Water Resources Research 28(7), 1955-1974.CrossRefGoogle Scholar
  17. Haggerty R., Schroth M. H., and Istok J. D. (1998) Simplified method of “PushPull” test data analysis for determining in situ reaction rate coefficients. Ground Water 36(2), 314-324.CrossRefGoogle Scholar
  18. Harvey C. and Gorelick S. M. (2000) Rate-limited mass transfer or macrodispersion: Which dominates plume evolution at the macrodispersion experiment (MADE) site? Water Resources Research 36(3), 637-650.CrossRefGoogle Scholar
  19. Jamtveit B. and Meakin P. (1999) Growth, Dissolution and Pattern Formation in Geosystems, pp. 428. Springer, Berlin.Google Scholar
  20. Lasaga A. C. (1998) Kinetic Theory in the Earth Sciences. Princeton University Press, NJ.Google Scholar
  21. Li L., Peters C. A., and Celia M. A. (2006) Upscaling geochemical reaction rates using pore-scale network modeling. Advances in Water Resources 29(9), 1351-1370.CrossRefGoogle Scholar
  22. Lichtner P. C. (1988) The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium. Geochimica Cosmochimica Acta 52(1), 143-165.CrossRefGoogle Scholar
  23. Lichtner P. C. (1993) Scaling properties of time-space kinetic mass transport equations and the local equilibrium limit. American Journal of Science 293(4), 257-296.Google Scholar
  24. Lichtner P. C. (1996) Continuum formulation of multicomponent-multiphase reactive transport. In Reactive transport in porous media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 1-81. Mineralogical society of America, Washington DC.Google Scholar
  25. Lichtner P. C. (1998) Modeling reactive flow and transport in natural systems. Proceedings of the Rome Seminar on Environmental Geochemistry, 5-72.Google Scholar
  26. Liesegang R. E. (1896) Naturwiss. Wonchenschr. 11, 353.Google Scholar
  27. Maher K., Steefel C. I., DePaolo D. J., and Viani B. E. (2006) The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochimica et Cosmochimica Acta 70 (2),337-363.CrossRefGoogle Scholar
  28. Malmstr öm M. E., Destouni G., Banwart S. A., and Str ömberg B. H. E. (2000) Resolving the scale-dependence of mineral weathering rates. Environmental Science Technology 34(7), 1375-1378.CrossRefGoogle Scholar
  29. Meile C. and Tuncay K. (2006) Scale dependence of reaction rates in porous media. Advances in Water Resources 29(1), 62-71.CrossRefGoogle Scholar
  30. Murphy W. M., Oelkers E. H., and Lichtner P. C. (1989) Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes. Chemical Geology 78, 357-380.CrossRefGoogle Scholar
  31. Newman J. S. (1991) Electrochemical Systems. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  32. Oelkers E. A. (1996) Physical and chemical properties of rocks and fluids for chemical mass transport calculations. In Reactive Transport in Porous Media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 131-191. Mineralogical Society of America, Washington DC.Google Scholar
  33. Oelkers E. H., Schott J., and Devidal J.-L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica et Cosmochimica Acta 58(9), 2011-2024.CrossRefGoogle Scholar
  34. Ogata A. and Banks R. B. (1961) A solution of the differential equation of logitudinal dispersion in porous media. In U.S. Geological Survey Professional Paper, 411-A.Google Scholar
  35. Onsager L. (1931) Reciprocal relations in irreversible processes II. Physical Review 38,2265-2279.CrossRefGoogle Scholar
  36. Ortoleva P. (1994) Geochemical Self-Organization. Oxford University Press, NY.Google Scholar
  37. Ortoleva P., Auchmuth G., Chadam J., Hettmer H., Merino E., Moore C. H., and Ripley E. (1986) Redox front propagation and banding modalities. Physica 19D, 334-354.Google Scholar
  38. Ortoleva P., Chadam J., Merino E., and Sen A. (1987) Geochemical self-organization II: The reactive-infiltration instability. American Journal of Science 287,1008-1040.Google Scholar
  39. Pharmamenko E. I. (1967) Electrical Properties of Rock. Plenum Press, NY.Google Scholar
  40. Phillips O. M. (1991) Flow and Reactions in Permeable Rocks. Cambridge University Press, Cambridge.Google Scholar
  41. Plummer L. N., Busenberg E., Bohlke J. K., Nelms D. L., Michel R. L., and Schlosser P. (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, VA: A multi-tracer approach. Chemical Geology 179, 93-111.CrossRefGoogle Scholar
  42. Pokrovsky O. S., Golubev S. V., and Schott J. (2005) Dissolution kinetics of calcite, dolomite and magnesite at 25 C and 0 to 50 atm pCO2 . Chemical Geology 217(3-4),239-255.CrossRefGoogle Scholar
  43. Prigogine I. (1967) Introduction to the thermodynamics of irreversible processes. Interscience.Google Scholar
  44. Sak P. B., Fischer, D. M., Gardner T. W., Gardener, T., Murphy, K., M., and Brantley, S. L. (2004) Rates of weathering rind formation on Costa Rican basalt. Geochimica et Cosmochimica Acta 68(7), 1453-1472.CrossRefGoogle Scholar
  45. Skagius K. and Neretnieks I. (1986) Diffusivity measurements and electricalresistivity measurements in rock samples under mechanical stress. Water Resources Research 22(4), 570-580.CrossRefGoogle Scholar
  46. Slichter C. S. (1905) Field measurement of the rate of movement of underground waters. In U.S. Geological Survey, Water Supply Paper.Google Scholar
  47. Snodgrass M. F. and Kitanidis P. K. (1998) A method to infer in-situ reaction rates from push-pull experiments. Ground Water 36, 645-650.CrossRefGoogle Scholar
  48. Steefel C. I., DePaolo D. J., and Lichtner P. C. (2005) Reactive transport modeling: An essential tool and a new research approach for the Earth Sciences. Earth and Planetary Science Letters 240, 539-558.CrossRefGoogle Scholar
  49. Steefel C. I. and Lasaga A. C. (1990) The evolution of dissolution patterns: Permeability change due to coupled flow and reaction. In Chemical Modeling of Aqueous Systems II, Vol. 416 (eds. D. Melchior and R. L. Bassett), pp. 212-225. American Chemical Society, Washington.CrossRefGoogle Scholar
  50. Steefel C. I. and Lasaga A. C. (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. American Journal of Science 294, 529-592.Google Scholar
  51. Steefel C. I. and Lichtner P. C. (1998) Multicomponent reactive transport in discrete fractures: II. Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. Journal of Hydrology 209(1-4), 200-224.CrossRefGoogle Scholar
  52. Steefel C. I. and MacQuarrie K. T. B. (1996) Approaches to modeling of reactive transport in porous media. In Reactive Transport in Porous Media, Vol. 34 (eds. P. C. Lichtner, C. I. Steefel, and E. H. Oelkers), pp. 83-130. Mineralogical Society of America, Washington DC.Google Scholar
  53. Steefel C. I. and Van Cappellen P. (1990) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening. Geochimica et Cosmochimica Acta 54(10), 2657-2677.CrossRefGoogle Scholar
  54. Taylor G. I. (1953) The dispersion of soluble matter in a solvent flowing through a tube. Proceedings of the Royal Society London Series A 219, 196-203.CrossRefGoogle Scholar
  55. Tompson A. F. B., Carle S. F., Rosenberg N. D., and Maxwell R. M. (1999) Analysis of groundwater migration from artificial recharge in a large urban aquifer: A simulation perspective. Water Resources Research 35(10), 2981-2998.CrossRefGoogle Scholar
  56. Varni M. and Carrera J. (1998) Simulation of groundwater age distributions. Water Resources Research 34, 3271-3281.CrossRefGoogle Scholar
  57. Weissmann G. S., Zhang Y., LaBolle E. M., and Fogg G. E. (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resources Research 38(10), 1198.CrossRefGoogle Scholar
  58. White A. F. and Brantley S. L. (2003) The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geol. 202 (3-4), 479-506.CrossRefGoogle Scholar
  59. White A. F., Schulz M. S., Vivit D. V., Blum A. E., and Stonestrom D. A. (2006) Controls on soil pore water solutes: An approach for distinguishing between biogenic and lithogenic processes. Journal of Geochemical Exploration 88(1-3), 363-366.CrossRefGoogle Scholar
  60. Zhu C. (2005) In situ feldspar dissolution rates in an aquifer. Geochimica et Cosmochimica Acta 69(6), 1435-1453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carl I. Steefel
    • 1
  1. 1.Earth Sciences DivisionLawrence Berkeley National LaboratoryUSA

Personalised recommendations