Skip to main content

Transient Global Cerebral Ischemia Produces Morphologically Necrotic, Not Apoptotic Neurons

  • Chapter
  • First Online:
Acute Neuronal Injury

Abstract

Brief global cerebral ischemia results in relatively selective brain damage that matures over hours to many days. The most thoroughly studied structure is the hippocampal CA1 sector as these pyramidal neurons typically die 2–4 days after the insult. Other brain regions are also damaged, especially with prolonged ischemia and in true cardiac arrest models. Nonetheless, most studies target the CA1 zone to understand the molecular mechanisms of global ischemic injury and to evaluate putative neuroprotectants, leading to a number of existing studies of the morphological features of cell death after global ischemia. Cerebral ischemic cell death, including that of CA1 neurons, was long considered to be necrotic. Recently, however, some investigators have tacitly accepted that this cell death is apoptotic. This can partly be attributed to the biochemical evidence supporting the involvement of apoptotic mechanisms such as caspase activation and apoptosis-inducing factor release from mitochondria. Moreover, several studies claim that cell death appears morphologically apoptotic. If morphological criteria for necrosis and apoptosis are strictly applied to this biological problem, however, one may conclude that these are predominantly necrotic features. Thus, in our opinion, neuronal death after global cerebral ischemia in adult animals more closely resembles necrosis than either apoptosis or autophagy-induced cell death. Indeed, conclusive evidence for apoptotic neurons is lacking from light and electron microscopy studies. Nonetheless, the occurrence of programmed cell death mechanisms following cerebral ischemia, along with some signs of excessive autophagy, argues against the traditional view that global ischemia only induces necrosis in a completely unregulated, cytoclastic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci 1147:233–241

    Article  PubMed  CAS  Google Scholar 

  • Bendel O, Bueters T, von Euler M et al (2005) Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab 25(12):1586–1595

    Article  PubMed  CAS  Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults after N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    Article  PubMed  CAS  Google Scholar 

  • Boujrad H, Gubkina O, Robert N et al (2007) AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6:2612–2619

    Article  PubMed  CAS  Google Scholar 

  • Brahma MK, Dohare P, Varma S et al (2009) The neuronal apoptotic death in global cerebral ischemia in gerbil: important role for sodium channel modulator. J Neurosci Res 87:1400–1411

    Article  PubMed  CAS  Google Scholar 

  • Brierley J, Adams J, Graham D et al (1971) Neocortical death after cardiac arrest. A clinical, neurophysiological, and neuropathological report of two cases. Lancet 2:560–565

    PubMed  CAS  Google Scholar 

  • Brown A, Brierley J (1972) Anoxic-ischemic cell change in rat brain. Light microscopic and fine-structural observations. J Neurol Sci 16:59–84

    CAS  Google Scholar 

  • Bueters T, von Euler M, Bendel O et al (2008) Degeneration of newly formed CA1 neurons following global ischemia in the rat. Exp Neurol 209:114–124

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Xing J, Xiao X et al (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27:9278–9293

    Article  PubMed  CAS  Google Scholar 

  • Carboni S, Antonsson B, Gaillard P et al (2005) Control of death receptor and mitochondrial-dependent apoptosis by c-Jun N-terminal kinase in hippocampal CA1 neurones following global transient ischaemia. J Neurochem 92:1054–1060

    Article  PubMed  CAS  Google Scholar 

  • Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32:329–339

    Article  PubMed  CAS  Google Scholar 

  • Chu CT (2006) Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 65:423–432

    Article  PubMed  Google Scholar 

  • Colbourne F, Li H, Buchan AM (1999a) Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 30:662–668

    PubMed  CAS  Google Scholar 

  • Colbourne F, Sutherland GR, Auer RN (1999b) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J. Neurosci. 19:4200–4210

    PubMed  CAS  Google Scholar 

  • Cole G, Cowie VA (1987) Long survival after cardiac arrest: case report and neuropathological findings. Clin Neuropathol 6:104–109

    PubMed  CAS  Google Scholar 

  • David KK, Andrabi SA, Dawson TM et al (2009) Parthanatos, a messenger of death. Front Biosci 14:1116–1128

    Article  PubMed  CAS  Google Scholar 

  • Deshpande J, Bergstedt K, Lindén T et al (1992) Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res 88:91–105

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Busto R, Alonso O et al (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow and Metab 13:541–549

    Article  CAS  Google Scholar 

  • Du C, Hu R, Csernansky CA et al (1996) Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow and Metab 16:195–201

    Article  CAS  Google Scholar 

  • Harmon BV, Corder AM, Collins RJ et al (1990) Cell death induced in a murine mastocytoma by 42–47 degrees C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int J Radiat Biol 58:845–858

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Saito A, Okuno S et al (2005) Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 25:41–53

    Article  PubMed  CAS  Google Scholar 

  • Horn M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 85:79–87

    Article  PubMed  CAS  Google Scholar 

  • Hossmann KA, Oschlies U, Schwindt W et al (2001) Electron microscopic investigation of rat brain after brief cardiac arrest. Acta Neuropathol (Berl) 101:101–113

    CAS  Google Scholar 

  • Ikeda H, Suzuki Y, Suzuki M et al (1998) Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 42:530–537

    Article  PubMed  CAS  Google Scholar 

  • Ito U, Spatz M, Walker JT Jr et al (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32:209–223

    CAS  Google Scholar 

  • Johansen FF, Jorgensen MB, Ekstrom von Lubitz DK et al (1984) Selective dendrite damage in hippocampal CA1 stratum radiatum with unchanged axon ultrastructure and glutamate uptake after transient cerebral ischaemia in the rat. Brain Res 291:373–377

    Article  PubMed  CAS  Google Scholar 

  • Jortner BS (2006) The return of the dark neuron. A histological artifact complicating contemporary neurotoxicologic evaluation. Neurotoxicology 27:628–634

    CAS  Google Scholar 

  • Kalimo H, Garcia JH, Kamijyo Y et al (1977) The ultrastructure of “brain death”. II. Electron microscopy of feline cortex after complete ischemia. Virchows Arch B Cell Pathol 25:207–220

    CAS  Google Scholar 

  • Kerr JF (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  • Kherani ZS, Auer RN (2008) Pharmacologic analysis of the mechanism of dark neuron production in cerebral cortex. Acta Neuropathol 116:447–452

    Article  PubMed  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 62:209–218

    Article  CAS  Google Scholar 

  • Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147

    Article  CAS  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Hickey RW, Chen Y et al (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550

    Article  PubMed  CAS  Google Scholar 

  • Laidley DT, Colbourne F, Corbett D (2005) Increased behavioral and histological variability arising from changes in cerebrovascular anatomy of the mongolian gerbil. Curr Neurovasc Res 2:401–407

    Article  PubMed  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Longstreth WT Jr, Inui TS, Cobb LA et al (1983) Neurologic recovery after out-of-hospital cardiac arrest. Ann Intern Med 98:588–592

    PubMed  Google Scholar 

  • MacLellan CL, Clark DL, Silasi G et al (2009) Use of prolonged hypothermia to treat ischemic and hemorrhagic stroke. J Neurotrauma 26:313–323

    Article  PubMed  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    CAS  Google Scholar 

  • Martin LJ, Al-Abdulla NA, Brambrink AM et al (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309

    Article  PubMed  CAS  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  • Nitatori T, Sato N, Waguri S et al (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    PubMed  CAS  Google Scholar 

  • Ostrowski RP, Graupner G, Titova E et al (2008) The hyperbaric oxygen preconditioning-induced brain protection is mediated by a reduction of early apoptosis after transient global cerebral ischemia. Neurobiol Dis 29:1–13

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat AS, Faccioni-Heuser MC, Netto CA et al (2007) An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion. J Anat 211:589–599

    Article  PubMed  Google Scholar 

  • Petito CK, Feldmann E, Pulsinelli WA et al (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286

    PubMed  CAS  Google Scholar 

  • Petito CK, Olarte JP, Roberts B et al (1998) Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 57:231–238

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Pulsinelli WA (1984a) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J Cereb Blood Flow Metab 4:194–205

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Pulsinelli WA (1984b) Sequential development of reversible and irreversible neuronal damage following cerebral ischemia. J Neuropathol Exp Neurol 43:141–153

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  • Rafols JA, Daya AM, O’Neil BJ et al (1995) Global brain ischemia and reperfusion: Golgi apparatus ultrastructure in neurons selectively vulnerable to death. Acta Neuropathol 90:17–30

    Article  PubMed  CAS  Google Scholar 

  • Ruan YW, Ling GY, Zhang JL et al (2003) Apoptosis in the adult striatum after transient forebrain ischemia and the effects of ischemic severity. Brain Res 982:228–240

    Article  PubMed  CAS  Google Scholar 

  • Schmidt W, Reymann KG (2002) Proliferating cells differentiate into neurons in the hippocampal CA1 region of gerbils after global cerebral ischemia. Neurosci Lett 334:153–156

    Article  PubMed  CAS  Google Scholar 

  • Sheldon RA, Hall JJ, Noble LJ et al (2001) Delayed cell death in neonatal mouse hippocampus from hypoxia-ischemia is neither apoptotic nor necrotic. Neurosci Lett 304:165–168

    Article  PubMed  CAS  Google Scholar 

  • Siebke H, Rod T, Breivik H et al (1975) Survival after 40 minutes; submersion without cerebral sequeae. Lancet 1:1275–1277

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Bendek G, Dahlgren N et al (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    Article  PubMed  CAS  Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97:14376–14381

    Article  PubMed  CAS  Google Scholar 

  • Trump BF, Goldblatt PJ, Stowell RE (1965) Studies of mouse liver necrosis in vitro. Ultrastructural and cytochemical alterations in hepatic parenchymal cell nuclei. Lab Invest 14:1969–1999

    CAS  Google Scholar 

  • Wang Y, Dawson VL, and Dawson TM, 2009. Poly(ADP-ribose) signals to mitochondrial AIF: A key event in parthanatos. Exp Neurol 218:193–202

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann ER, Charcansky A, Faccioni-Heuser MC et al (2006) An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion. Anat Embryol (Berl) 211:423–434

    Article  Google Scholar 

  • Yamamoto K, Hayakawa T, Mogami H et al (1990) Ultrastructural investigation of the CA1 region of the hippocampus after transient cerebral ischemia in gerbils. Acta Neuropathol (Berl) 80:487–492

    Article  CAS  Google Scholar 

  • Yamashima T, Tonchev AB, Borlongan CV (2007) Differential response to ischemia in adjacent hippocampalsectors: neuronal death in CA1 versus neurogenesis in dentate gyrus. Biotechnol J 2:596–607

    Article  PubMed  CAS  Google Scholar 

  • Yamashima T, Tonchev AB, Tsukada T et al (2003) Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13:791–800

    Article  PubMed  CAS  Google Scholar 

  • Zeng YS, Xu ZC (2000) Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci Res 37:113–125

    Article  PubMed  CAS  Google Scholar 

  • Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick Colbourne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Colbourne, F., Auer, R.N. (2010). Transient Global Cerebral Ischemia Produces Morphologically Necrotic, Not Apoptotic Neurons. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73226-8_8

Download citation

Publish with us

Policies and ethics