Skip to main content

Programmed Neuronal Cell Death Mechanisms in CNS Injury

  • Chapter
  • First Online:

Abstract

Neuronal cell death is a critical physiological process necessary for the normal development of the CNS, as well as essential for removing dysfunctional cells after injury or other various pathological conditions. However, excessive or inappropriate neuronal cell loss is also a hallmark of acute or chronic neurodegeneration (Eldadah and Faden 2000; Snider et al. 1999; Graeber and Moran 2002; Honig and Rosenberg 2000). Many cell death effector pathways are common to both physiological and pathophysiological processes. Elucidating such mechanisms and initiating signals is essential for understanding neurodegeneration and designing effective therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alano CC, Ying W, Swanson RA (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD + depletion and mitochondrial permeability transition. J Biol Chem 279:18895–18902

    PubMed  CAS  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    PubMed  CAS  Google Scholar 

  • Andrabi SA, Kim NS, Yu SW et al (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103:18308–18313

    PubMed  CAS  Google Scholar 

  • Aravind L, Dixit VM, Koonin EV (1999) The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 24:47–53

    PubMed  CAS  Google Scholar 

  • Arnheim G (1890) Coagulationsnekrose und Kernschwund. Virchows Arch Pathol Anat 120:367–383

    Google Scholar 

  • Bayly PV, Dikranian KT, Black EE et al (2006) Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Brain Res 1107:70–81

    PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    PubMed  CAS  Google Scholar 

  • Bergeron L, Perez GI, Macdonald G et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314

    PubMed  CAS  Google Scholar 

  • Bittigau P, Sifringer M, Pohl D et al (1999) Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 45:724–735

    PubMed  CAS  Google Scholar 

  • Bitko V, Barik S (2001) An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J Cell Biochem 80:441–454

    PubMed  CAS  Google Scholar 

  • Boonstra J (2003) Progression through the G1-phase of the on-going cell cycle. J Cell Biochem 90:244–252

    PubMed  CAS  Google Scholar 

  • Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92:7162–7166

    PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274:17484–17490

    PubMed  CAS  Google Scholar 

  • Boulos S, Meloni BP, Arthur PG et al (2007) Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis 25:54–64

    PubMed  CAS  Google Scholar 

  • Bredesen DE (1995) Neural apoptosis. Ann Neurol 38:839–851

    PubMed  CAS  Google Scholar 

  • Bredesen DE (2000) Apoptosis: overview and signal transduction pathways. J Neurotrauma 17:801–810

    PubMed  CAS  Google Scholar 

  • Cande C, Vahsen N, Garrido C, Kroemer G (2004a) Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ 11:591–595

    PubMed  CAS  Google Scholar 

  • Cande C, Vahsen N, Kouranti I et al (2004b) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521

    PubMed  CAS  Google Scholar 

  • Cao G, Clark RS, Pei W et al (2003) Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab 23:1137–1150

    PubMed  CAS  Google Scholar 

  • Castro-Obregon S, Del Rio G, Chen SF et al (2002) A ligand-receptor pair that triggers a non-apoptotic form of programmed cell death. Cell Death Differ 9:807–817

    PubMed  CAS  Google Scholar 

  • Chauvier D, Lecoeur H, Langonne A et al (2005) Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons. Apoptosis 10:1243–1259

    PubMed  CAS  Google Scholar 

  • Chautan M, Chazal G, Cecconi F et al (1999) Interdigital cell death can occur through a necrotic and caspase- independent pathway. Curr Biol 9:967–970

    PubMed  CAS  Google Scholar 

  • Cheung EC, Melanson-Drapeau L, Cregan SP et al (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25:1324–1334

    PubMed  CAS  Google Scholar 

  • Cheung EC, Joza N, Steenaart NA et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25:4061–4073

    PubMed  CAS  Google Scholar 

  • Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    CAS  Google Scholar 

  • Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70

    PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    PubMed  CAS  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    PubMed  CAS  Google Scholar 

  • Colgan J, Asmal M, Luban J (2000) Isolation, characterization and targeted disruption of mouse ppia: cyclophilin A is not essential for mammalian cell viability. Genomics 68:167–178

    PubMed  CAS  Google Scholar 

  • Cregan SP, Fortin A, MacLaurin JG et al (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517

    PubMed  CAS  Google Scholar 

  • Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    PubMed  CAS  Google Scholar 

  • Culmsee C, Zhu C, Landshamer S et al (2005) Apoptosis-inducing factor triggered by poly(ADP-Ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 25:10262–10272

    PubMed  CAS  Google Scholar 

  • Dal Canto MC, Gurney ME (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145:1271–1279

    PubMed  CAS  Google Scholar 

  • Daugas E, Nochy D, Ravagnan L et al (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    PubMed  CAS  Google Scholar 

  • David KK, Sasaki M, Yu SW et al (2006) EndoG is dispensable in embryogenesis and apoptosis. Cell Death Differ 13:1147–1155

    PubMed  CAS  Google Scholar 

  • Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis. Genes Dev 13:239–252

    PubMed  CAS  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F et al (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333–8338

    PubMed  Google Scholar 

  • Dikranian K, Ishimaru MJ, Tenkova T et al (2001) Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 8:359–379

    PubMed  CAS  Google Scholar 

  • Djebaili M, Guo Q, Pettus EH et al (2005) The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 22:106–118

    PubMed  Google Scholar 

  • Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  • Eguchi Y, Srinivasan A, Tomaselli KJ et al (1999) ATP-dependent steps in apoptotic signal transduction. Cancer Res 59:2174–2181

    PubMed  CAS  Google Scholar 

  • Eldadah BA, Faden AI (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 17:811–829

    PubMed  CAS  Google Scholar 

  • Eliasson MJ, Sampei K, Mandir AS et al (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    PubMed  CAS  Google Scholar 

  • Endres M, Wang ZQ, Namura S et al (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151

    PubMed  CAS  Google Scholar 

  • Enoksson M, Robertson JD, Gogvadze V et al (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279:49575–49578

    PubMed  CAS  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    PubMed  CAS  Google Scholar 

  • Faden AI (2002) Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol 15:707–712

    PubMed  Google Scholar 

  • Farber E (1994) Programmed cell death: necrosis versus apoptosis. Mod Pathol 7:605–609

    PubMed  CAS  Google Scholar 

  • Ferrand-Drake M, Zhu C, Gido G et al (2003) Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. J Neurochem 85:1431–1442

    PubMed  CAS  Google Scholar 

  • Ferrer I, Friguls B, Dalfo E et al (2003) Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol Appl Neurobiol 29:472–481

    PubMed  CAS  Google Scholar 

  • Fischer PM, Endicott J, Meijer L (2003) Cyclin-dependent kinase inhibitors. Prog Cell Cycle Res 5:235–248

    PubMed  Google Scholar 

  • Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17:843–855

    PubMed  CAS  Google Scholar 

  • Flemming W (1885) Uber die Bildung von Richtungsfiguren in Saugethiereiern beim Untergang Graaf’scher Follikel. Arch Anat EntwGesch 221–244

    Google Scholar 

  • Formigli L, Papucci L, Tani A et al (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–49

    PubMed  CAS  Google Scholar 

  • Franklin EE, Robertson JD (2007) Requirement of Apaf-1 for mitochondrial events and the cleavage or activation of all procaspases during genotoxic stress-induced apoptosis. Biochem J 405:115–122

    PubMed  CAS  Google Scholar 

  • Freeman RS, Estus S, Johnson EM Jr (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12:343–355

    PubMed  CAS  Google Scholar 

  • Fujikawa DG (2000) Confusion between neuronal apoptosis and activation of programmed cell death mechanisms in acute necrotic insults. Trends Neurosci 23:410–411

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, Shinmei SS, Zhao S, Aviles ER Jr (2007) Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. Brain Res 1135:206–218

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, Ke X, Trinidad RB et al (2002) Caspase-3 is not activated in seizure-induced neuronal necrosis with internucleosomal DNA cleavage. J Neurochem 83:229–240

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, Shinmei SS, Cai B (2000) Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98:41–53

    PubMed  CAS  Google Scholar 

  • Furuya T, Hayakawa H, Yamada M et al (2004) Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. J Neurosci 24:1865–1872

    PubMed  CAS  Google Scholar 

  • Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity–targets–functions. Curr Top Med Chem 3:1315–1347

    PubMed  CAS  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    PubMed  CAS  Google Scholar 

  • Garrido C, Kroemer G (2004) Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16:639–646

    PubMed  CAS  Google Scholar 

  • Giovanni A, Wirtz-Brugger F, Keramaris E et al (1999) Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. J Biol Chem 274:19011–19016

    PubMed  CAS  Google Scholar 

  • Glucksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26:59–86

    Google Scholar 

  • Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12:385–390

    PubMed  Google Scholar 

  • Graper L (1914) Eine neue Anschauung uber physiologische Zellausschaltung. Arch Zellforsch 12:373–394

    Google Scholar 

  • Greene LA, Biswas SC, Liu DX (2004) Cell cycle molecules and vertebrate neuron death: E2F at the hub. Cell Death Differ 11:49–60

    PubMed  CAS  Google Scholar 

  • Guadagno TM, Newport JW (1996) Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell 84:73–82

    PubMed  CAS  Google Scholar 

  • Gurbuxani S, Schmitt E, Cande C et al (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678

    PubMed  CAS  Google Scholar 

  • Hamdane M, Bretteville A, Sambo AV et al (2005) p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J Cell Sci 118:1291–1298

    PubMed  CAS  Google Scholar 

  • Helekar SA, Char D, Neff S, Patrick J (1994) Prolyl isomerase requirement for the expression of functional homo-oligomeric ligand-gated ion channels. Neuron 12:179–189

    PubMed  CAS  Google Scholar 

  • Hengartner MO (1999) Programmed cell death in the nematode C. elegans. Recent Prog Horm Res 54:213–222 discussion 222–214

    PubMed  CAS  Google Scholar 

  • Herrup K, Busser JC (1995) The induction of multiple cell cycle events precedes target-related neuronal death. Development 121:2385–2395

    PubMed  CAS  Google Scholar 

  • Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25:259–264

    PubMed  CAS  Google Scholar 

  • Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108:317–330

    PubMed  CAS  Google Scholar 

  • Hsu YT, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci U S A 94:3668–3672

    PubMed  CAS  Google Scholar 

  • Ino H, Chiba T (2001) Cyclin-dependent kinase 4 and cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo. J Neurosci 21:6086–6094

    PubMed  CAS  Google Scholar 

  • Ishimaru MJ, Ikonomidou C, Tenkova TI et al (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 408:461–476

    PubMed  CAS  Google Scholar 

  • Joza N, Susin SA, Daugas E et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–554

    PubMed  CAS  Google Scholar 

  • Kang SJ, Wang S, Hara H et al (2000) Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol 149:613–622

    PubMed  CAS  Google Scholar 

  • Katsuno M, Sang C, Adachi H et al (2005) Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci U S A 102:16801–16806

    PubMed  CAS  Google Scholar 

  • Kerr JF (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kerr JF (2002) History of the events leading to the formulation of the apoptosis concept. Toxicology 181–182:471–474

    PubMed  Google Scholar 

  • Kim H, Kim WJ, Jeon ST et al (2005) Cyclophilin A may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix degrading enzymes and inflammatory cytokines from macrophages. Clin Immunol 116:217–224

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Higashi H, Jung HK et al (1996) The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 15:7060–7069

    PubMed  CAS  Google Scholar 

  • Klebs E (1889) Die Allgemeine Pathologie. Verlag Gustav Fisher, Jena

    Google Scholar 

  • Kochanek PM, Marion DW, Zhang W et al (1995) Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 12:1015–1025

    PubMed  CAS  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P et al (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12(Suppl 2):1463–1467

    PubMed  CAS  Google Scholar 

  • Kruman II, Wersto RP, Cardozo-Pelaez F et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    PubMed  CAS  Google Scholar 

  • Wen Y, Yang S, Liu R et al (2004) Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats. J Biol Chem 279:22684–22692

    PubMed  CAS  Google Scholar 

  • Kuan CY, Schloemer AJ, Lu A et al (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772

    PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    PubMed  CAS  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337

    PubMed  CAS  Google Scholar 

  • Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    PubMed  CAS  Google Scholar 

  • Larner SF, Hayes RL, McKinsey DM et al (2004) Increased expression and processing of caspase-12 after traumatic brain injury in rats. J Neurochem 88:78–90

    PubMed  CAS  Google Scholar 

  • Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    PubMed  CAS  Google Scholar 

  • Lee JP, Palfrey HC, Bindokas VP et al (1999) The role of immunophilins in mutant superoxide dismutase-1linked familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 96:3251–3256

    PubMed  CAS  Google Scholar 

  • Lee SH, Kwon HM, Kim YJ et al (2004) Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke 35:2195–2199

    PubMed  Google Scholar 

  • Lee BI, Lee DJ, Cho KJ, Kim GW (2005) Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett 386:23–27

    PubMed  CAS  Google Scholar 

  • Leist M, Single B, Castoldi AF et al (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    PubMed  CAS  Google Scholar 

  • Levin S (1998) Apoptosis, necrosis, or oncosis: what is your diagnosis? A report from the Cell Death Nomenclature Committee of the Society of Toxicologic Pathologists. Toxicol Sci 41:155–156

    PubMed  CAS  Google Scholar 

  • Levin S, Bucci TJ, Cohen SM et al (1999) The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol Pathol 27:484–490

    PubMed  CAS  Google Scholar 

  • Lewelt W, Jenkins LW, Miller JD (1982) Effects of experimental fluid-percussion injury of the brain on cerebrovascular reactivity of hypoxia and to hypercapnia. J Neurosurg 56:332–338

    PubMed  CAS  Google Scholar 

  • Li LJ, Naeve GS, Lee AS (1993) Temporal regulation of cyclin A-p107 and p33cdk2 complexes binding to a human thymidine kinase promoter element important for G1-S phase transcriptional regulation. Proc Natl Acad Sci U S A 90:3554–3558

    PubMed  CAS  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    PubMed  CAS  Google Scholar 

  • Li X, Nemoto M, Xu Z et al (2007) Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. Neuroscience 144:56–65

    PubMed  CAS  Google Scholar 

  • Li F, Mao HP, Ruchalski KL et al (2002) Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. Am J Physiol Cell Physiol 283:C917–C926

    PubMed  CAS  Google Scholar 

  • Lipton SA, Bossy-Wetzel E (2002) Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111:147–150

    PubMed  CAS  Google Scholar 

  • Liu DX, Greene LA (2001) Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 305:217–228

    PubMed  CAS  Google Scholar 

  • Liu DX, Biswas SC, Greene LA (2004) B-myb and C-myb play required roles in neuronal apoptosis evoked by nerve growth factor deprivation and DNA damage. J Neurosci 24:8720–8725

    PubMed  CAS  Google Scholar 

  • Lockshin RA, Williams CM (1964) Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10:643–649

    CAS  Google Scholar 

  • Loeffler M, Daugas E, Susin SA et al (2001) Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J 15:758–767

    PubMed  CAS  Google Scholar 

  • Love S (2003) Neuronal expression of cell cycle-related proteins after brain ischaemia in man. Neurosci Lett 353:29–32

    PubMed  CAS  Google Scholar 

  • Lu A, Ran R, Parmentier-Batteur S et al (2002) Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81:355–364

    PubMed  CAS  Google Scholar 

  • Luo X, Budihardjo I, Zou H et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1999) Commentary: on the misuse of the term “necrosis”: a step in the right direction. Toxicol Pathol 27:494

    PubMed  CAS  Google Scholar 

  • Martins LM, Morrison A, Klupsch K et al (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 24:9848–9862

    PubMed  CAS  Google Scholar 

  • Matsumori Y, Hong SM, Aoyama K et al (2005) Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 25(7):899–910

    PubMed  CAS  Google Scholar 

  • Maas AI (2001) Neuroprotective agents in traumatic brain injury. Expert Opin Investig Drugs 10:753–767

    PubMed  CAS  Google Scholar 

  • McIntosh TK (1994) Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6:109–162

    PubMed  CAS  Google Scholar 

  • McPherson CA, Kubik J, Wine RN et al (2003) Alterations in cyclin A, B, and D1 in mouse dentate gyrus following TMT-induced hippocampal damage. Neurotox Res 5:339–354

    PubMed  Google Scholar 

  • Mikuriya T, Sugahara K, Takemoto T et al (2005) Geranylgeranylacetone, a heat shock protein inducer, prevents acoustic injury in the guinea pig. Brain Res 1065:107–114

    PubMed  CAS  Google Scholar 

  • Moubarak RS, Yuste VJ, Artus C et al (2007) Sequential Activation of PARP-1, Calpains, and Bax is Essential in AIF-Mediated Programmed Necrosis. Mol Cell Biol 27(13):4844–4862

    PubMed  CAS  Google Scholar 

  • Murakami H, Pain D, Blobel G (1988) 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol 107:2051–2057

    PubMed  CAS  Google Scholar 

  • Nagai Y, Fujiki M, Inoue R et al (2005) Neuroprotective effect of geranylgeranylacetone, a noninvasive heat shock protein inducer, on cerebral infarction in rats. Neurosci Lett 374:183–188

    PubMed  CAS  Google Scholar 

  • Nagy Z (2000) Cell cycle regulatory failure in neurones: causes and consequences. Neurobiol Aging 21:761–769

    PubMed  CAS  Google Scholar 

  • Nahle Z, Polakoff J, Davuluri RV et al (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4:859–864

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    PubMed  CAS  Google Scholar 

  • Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37(1):7–38

    PubMed  CAS  Google Scholar 

  • Narkilahti S, Jutila L, Alafuzoff I et al (2007) Increased expression of caspase 2 in experimental and human temporal lobe epilepsy. Neuromolecular Med 9:129–144

    PubMed  CAS  Google Scholar 

  • Nathoo N, Narotam PK, Agrawal DK et al (2004) Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J Neurosurg 101:233–240

    PubMed  Google Scholar 

  • Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9:1294–1306

    PubMed  CAS  Google Scholar 

  • Nguyen MD, Boudreau M, Kriz J et al (2003) Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 23:2131–2140

    PubMed  CAS  Google Scholar 

  • Nishioka N, Arnold SE (2004) Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am J Geriatr Psychiatry 12:167–175

    PubMed  Google Scholar 

  • Nishitani H, Lygerou Z (2002) Control of DNA replication licensing in a cell cycle. Genes Cells 7:523–534

    PubMed  CAS  Google Scholar 

  • Nissen F (1886) Uber das Verhalten der Kerne in den Mich-drusenzellen bei der Absonderung. Arch Mikroskop Anat 26:337–342

    Google Scholar 

  • Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59:126–142

    PubMed  CAS  Google Scholar 

  • Okano HJ, Pfaff DW, Gibbs RB (1993) RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J Neurosci 13:2930–2938

    PubMed  CAS  Google Scholar 

  • Oppenheim RW, Flavell RA, Vinsant S et al (2001) Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 21:4752–4760

    PubMed  CAS  Google Scholar 

  • Osuga H, Osuga S, Wang F et al (2000) Cyclin-dependent kinases as a therapeutic target for stroke. Proc Natl Acad Sci U S A 97:10254–10259

    PubMed  CAS  Google Scholar 

  • Otera H, Ohsakaya S, Nagaura Z et al (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386

    PubMed  CAS  Google Scholar 

  • Otsuka Y, Tanaka T, Uchida D et al (2004) Roles of cyclin-dependent kinase 4 and p53 in neuronal cell death induced by doxorubicin on cerebellar granule neurons in mouse. Neurosci Lett 365:180–185

    PubMed  CAS  Google Scholar 

  • Padmanabhan J, Park DS, Greene LA, Shelanski ML (1999) Role of cell cycle regulatory proteins in cerebellar granule neuron apoptosis. J Neurosci 19:8747–8756

    PubMed  CAS  Google Scholar 

  • Panter SS, Faden AI (1992a) Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury. Neurosci Lett 136:165–168

    PubMed  CAS  Google Scholar 

  • Panter SS, Faden AI (1992b) Biochemical changes and secondary injury from stroke and trauma, vol Chapter 4, Principles and Practice of Restorative Neurology. Butterworth-Heinemann, New York, pp 32–52

    Google Scholar 

  • Parcellier A, Gurbuxani S, Schmitt E et al (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304:505–512

    PubMed  CAS  Google Scholar 

  • Park DS, Levine B, Ferrari G, Greene LA (1997) Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci 17:8975–8983

    PubMed  CAS  Google Scholar 

  • Park DS, Morris EJ, Bremner R et al (2000a) Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J Neurosci 20:3104–3114

    PubMed  CAS  Google Scholar 

  • Park DS, Obeidat A, Giovanni A, Greene LA (2000b) Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging 21:771–781

    PubMed  CAS  Google Scholar 

  • Paroni G, Henderson C, Schneider C, Brancolini C (2002) Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. J Biol Chem 277:15147–15161

    PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481

    PubMed  Google Scholar 

  • Pilar G, Landmesser L (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 68:339–356

    PubMed  CAS  Google Scholar 

  • Plesnila N, Zhu C, Culmsee C et al (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466

    PubMed  Google Scholar 

  • Pohl D, Bittigau P, Ishimaru MJ et al (1999) N-methyl-d-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A 96:2508–2513

    PubMed  CAS  Google Scholar 

  • Polster BM, Basanez G, Etxebarria A et al (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454

    PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Price DL, Martin LJ (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 378:88–104

    PubMed  CAS  Google Scholar 

  • Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16

    PubMed  CAS  Google Scholar 

  • Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137

    PubMed  CAS  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    PubMed  CAS  Google Scholar 

  • Rich T, Watson CJ, Wyllie A (1999) Apoptosis: the germs of death. Nat Cell Biol 1:E69–E71

    PubMed  CAS  Google Scholar 

  • Riedel G, Wetzel W, Kozikowski AP, Reymann KG (1995) Block of spatial learning by mGluR agonist tADA in rats. Neuropharmacology 34:559–561

    PubMed  CAS  Google Scholar 

  • Robertson JD, Enoksson M, Suomela M et al (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809

    PubMed  CAS  Google Scholar 

  • Robertson JD, Gogvadze V, Kropotov A et al (2004) Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 5:643–648

    PubMed  CAS  Google Scholar 

  • Rokitansky C (1846) Handbuch der allgemeinen pathologischen Anatomie. Braumuller & Seidel, Vienna

    Google Scholar 

  • Roy M, Sapolsky R (1999) Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci 22:419–422

    PubMed  CAS  Google Scholar 

  • Ruchalski KL, Mao H, Li Z et al (2006) Distinct Hsp70 domains mediate apoptosis inducing factor release and nuclear accumulation. J Biol Chem 281(12):7873–7880

    PubMed  CAS  Google Scholar 

  • Saito A, Hayashi T, Okuno S et al (2003) Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia. J Cereb Blood Flow Metab 23:1010–1019

    PubMed  CAS  Google Scholar 

  • Saito A, Hayashi T, Okuno S et al (2004a) Oxidative stress is associated with XIAP and Smac/DIABLO signaling pathways in mouse brains after transient focal cerebral ischemia. Stroke 35:1443–1448

    PubMed  CAS  Google Scholar 

  • Saito A, Hayashi T, Okuno S et al (2004b) Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1. Brain Res Mol Brain Res 127:89–95

    PubMed  CAS  Google Scholar 

  • Sakurai M, Hayashi T, Abe K et al (2000) Cyclin D1 and Cdk4 protein induction in motor neurons after transient spinal cord ischemia in rabbits. Stroke 31:200–207

    PubMed  CAS  Google Scholar 

  • Sanges D, Comitato A, Tammaro R, Marigo V (2006) Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc Natl Acad Sci U S A 103:17366–17371

    PubMed  CAS  Google Scholar 

  • Schmaus H, Albrecht E (1894) Uber Karyorrhexis. Virchows Arch Pathol Anat 1894:138

    Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Google Scholar 

  • Schwartz LM, Smith SW, Jones ME, Osborne BA (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A 90:980–984

    PubMed  CAS  Google Scholar 

  • Sears RC, Nevins JR (2002) Signaling networks that link cell proliferation and cell fate. J Biol Chem. 277:11617–11620

    PubMed  CAS  Google Scholar 

  • Seidberg NA, Clark RS, Zhang X et al (2003) Alterations in inducible 72-kDa heat shock protein and the chaperone cofactor BAG-1 in human brain after head injury. J Neurochem 84:514–521

    PubMed  CAS  Google Scholar 

  • Semba S, Huebner K (2006) Protein expression profiling identifies cyclophilin A as a molecular target in Fhit-mediated tumor suppression. Mol Cancer Res 4:529–538

    PubMed  CAS  Google Scholar 

  • Shen HY, He JC, Wang Y et al (2005) Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 280:39962–39969

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059–1065

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20:187–190

    PubMed  CAS  Google Scholar 

  • Siegelin M, Touzani O, Toutain J et al (2005a) Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiol Dis 20:509–518

    PubMed  CAS  Google Scholar 

  • Siegelin MD, Kossatz LS, Winckler J, Rami A (2005b) Regulation of XIAP and Smac/DIABLO in the rat hippocampus following transient forebrain ischemia. Neurochem Int 46:41–51

    PubMed  CAS  Google Scholar 

  • Sloviter RS (2002) Apoptosis: a guide for the perplexed. Trends Pharmacol Sci 23:19–24

    PubMed  CAS  Google Scholar 

  • Smith PD, Crocker SJ, Jackson-Lewis V et al (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 100:13650–13655

    PubMed  CAS  Google Scholar 

  • Snider BJ, Gottron FJ, Choi DW (1999) Apoptosis and necrosis in cerebrovascular disease. Ann N Y Acad Sci 893:243–253

    PubMed  CAS  Google Scholar 

  • Soustiel JF, Palzur E, Nevo O et al (2005) Neuroprotective anti-apoptosis effect of estrogens in traumatic brain injury. J Neurotrauma 22:345–352

    PubMed  Google Scholar 

  • Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97:14376–14381

    PubMed  CAS  Google Scholar 

  • Srinivasula SM, Datta P, Fan XJ et al (2000) Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 275:36152–36157

    PubMed  CAS  Google Scholar 

  • Strauss KI, Narayan RK, Raghupathi R (2004) Common patterns of bcl-2 family gene expression in two traumatic brain injury models. Neurotox Res 6:333–342

    PubMed  Google Scholar 

  • Strazza M, Luddi A, Brogi A et al (2004) Activation of cell cycle regulatory proteins in the apoptosis of terminally differentiated oligodendrocytes. Neurochem Res 29:923–931

    PubMed  CAS  Google Scholar 

  • Strobe H (1892) Zur Kenntnis verschiedener cellularer Vorgange und Erscheinungen in Geschwulsten. Beitr Pathol 11:1–38

    Google Scholar 

  • Sumrejkanchanakij P, Tamamori-Adachi M, Matsunaga Y et al (2003) Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22:8723–8730

    PubMed  CAS  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  CAS  Google Scholar 

  • Suzuki S, Chuang LF, Doi RH et al (2001) Kappa-opioid receptors on lymphocytes of a human lymphocytic cell line: morphine-induced up-regulation as evidenced by competitive RT-PCR and indirect immunofluorescence. Int Immunopharmacol 1:1733–1742

    PubMed  CAS  Google Scholar 

  • Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63:8–20

    PubMed  CAS  Google Scholar 

  • Takahashi K, Greenberg JH, Jackson P et al (1997) Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:1137–1142

    PubMed  CAS  Google Scholar 

  • Thornton BR, Toczyski DP (2003) Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5:1090–1094

    PubMed  CAS  Google Scholar 

  • Trump BF, Mergner WJ (1974) Cell Injury. In: GL ZBW, McCluskey RT (eds) The inflammatory process. Academic Press, New York, pp 115–257

    Google Scholar 

  • Tsuchiya D, Hong S, Matsumori Y et al (2003) Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery 53:1179–1187 discussion 1187-1178

    PubMed  Google Scholar 

  • Turmaine M, Raza A, Mahal A et al (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 97:8093–8097

    PubMed  CAS  Google Scholar 

  • Vahsen N, Cande C, Briere JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    PubMed  CAS  Google Scholar 

  • Van Cruchten S, Van Den Broeck W (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31:214–223

    PubMed  Google Scholar 

  • van Loo G, Saelens X, van Gurp M et al (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042

    PubMed  Google Scholar 

  • Verdaguer E, Garcia-Jorda E, Canudas AM et al (2002) Kainic acid-induced apoptosis in cerebellar granule neurons: an attempt at cell cycle re-entry. NeuroReport 13:413–416

    PubMed  CAS  Google Scholar 

  • Verdaguer E, Jorda EG, Stranges A et al (2003) Inhibition of CDKs: a strategy for preventing kainic acid-induced apoptosis in neurons. Ann N Y Acad Sci 1010:671–674

    PubMed  CAS  Google Scholar 

  • Vink R, McIntosh TK, Yamakami I, Faden AI (1988) 31P NMR characterization of graded traumatic brain injury in rats. Magn Reson Med 6:37–48

    PubMed  CAS  Google Scholar 

  • Virchow R (1859) Cellular pathology as based upon physiological and pathological histology. Dover Publications, New York Chance B, Translator

    Google Scholar 

  • Vlodavsky E, Palzur E, Feinsod M, Soustiel JF (2005) Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study. Acta Neuropathol 110:120–126

    PubMed  CAS  Google Scholar 

  • von Recklinghausen F (1910) Untersuchungen uber Rachitis und Osteomalacie. Verlag Gustav Fisher, Jena

    Google Scholar 

  • Volbracht C, Leist M, Kolb SA, Nicotera P (2001) Apoptosis in caspase-inhibited neurons. Mol Med 7:36–48

    PubMed  CAS  Google Scholar 

  • Wang F, Corbett D, Osuga H et al (2002a) Inhibition of cyclin-dependent kinases improves CA1 neuronal survival and behavioral performance after global ischemia in the rat. J Cereb Blood Flow Metab 22:171–182

    PubMed  CAS  Google Scholar 

  • Wang X, Yang C, Chai J et al (2002b) Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298:1587–1592

    PubMed  CAS  Google Scholar 

  • Wang H, Yu SW, Koh DW et al (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24:10963–10973

    PubMed  CAS  Google Scholar 

  • Wang S, Miura M, Jung YK et al (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509

    PubMed  CAS  Google Scholar 

  • Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6:226

    PubMed  Google Scholar 

  • Wartiovaara K, Barnabe-Heider F, Miller FD, Kaplan DR (2002) N-myc promotes survival and induces S-phase entry of postmitotic sympathetic neurons. J Neurosci 22:815–824

    PubMed  CAS  Google Scholar 

  • Waza M, Adachi H, Katsuno M et al (2005) 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 11:1088–1095

    PubMed  CAS  Google Scholar 

  • Weissmann A (1889) Essays upon hereditary and kindred biological problems. Oxford Press, Oxford

    Google Scholar 

  • Wissing S, Ludovico P, Herker E et al (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    PubMed  CAS  Google Scholar 

  • Weigert C (1878) Ein Experimeteller und anatomischer Beitrag zur Pathologie der specifischen Eintzundungsformen. Virchows Arch Pathol Anat 72:461–501

    Google Scholar 

  • Wen Y, Yang S, Liu R et al (2004) Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer’s disease-like tauopathy in female rats. J Biol Chem 279:22684–22692

    Google Scholar 

  • Wen Y, Yang S, Liu R, Simpkins JW (2005) Cell-cycle regulators are involved in transient cerebral ischemia induced neuronal apoptosis in female rats. FEBS Lett 579:4591–4599

    PubMed  CAS  Google Scholar 

  • Whalen MJ, Clark RS, Dixon CE et al (1999) Reduction of cognitive and motor deficits after traumatic brain injury in mice deficient in poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 19:835–842

    PubMed  CAS  Google Scholar 

  • Wu Y, Dong M, Toepfer NJ et al (2004) Role of endonuclease G in neuronal excitotoxicity in mice. Neurosci Lett 364:203–207

    PubMed  CAS  Google Scholar 

  • Wyllie AH (1974) Death in normal and neoplastic cells. J Clin Pathol Suppl (R Coll Pathol) 7:35–42

    CAS  Google Scholar 

  • Wyllie AH (1981) Cell death: a new classification separating apoptosis from necrosis. Chapman & Hall, New York

    Google Scholar 

  • Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24:131–144

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Ota K, Wang G et al (2001) Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21:7439–7446

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Faden AI (2004) Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRX 1:5–16

    PubMed  Google Scholar 

  • Yamakami I, McIntosh TK (1991) Alterations in regional cerebral blood flow following brain injury in the rat. J Cereb Blood Flow Metab 11:655–660

    PubMed  CAS  Google Scholar 

  • Yao XL, Liu J, Lee E et al (2005) Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats. J Neurotrauma 22:656–668

    PubMed  Google Scholar 

  • Yasuda H, Shichinohe H, Kuroda S et al (2005) Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res 1032:176–182

    PubMed  CAS  Google Scholar 

  • Ying W, Alano CC, Garnier P, Swanson RA (2005) NAD + as a metabolic link between DNA damage and cell death. J Neurosci Res 79:216–223

    PubMed  CAS  Google Scholar 

  • Ying W, Chen Y, Alano CC, Swanson RA (2002) Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J Cereb Blood Flow Metab 22:774–779

    PubMed  CAS  Google Scholar 

  • Young C, Roth KA, Klocke BJ et al (2005) Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol Dis 20:608–614

    PubMed  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    PubMed  CAS  Google Scholar 

  • Yu SW, Wang H, Dawson TM, Dawson VL (2003) Poly(ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 14:303–317

    PubMed  CAS  Google Scholar 

  • Yu SW, Andrabi SA, Wang H et al (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103:18314–18319

    PubMed  CAS  Google Scholar 

  • Yuan XQ, Prough DS, Smith TL, Dewitt DS (1988) The effects of traumatic brain injury on regional cerebral blood flow in rats. J Neurotrauma 5:289–301

    PubMed  CAS  Google Scholar 

  • Yuste VJ, Moubarak RS, Delettre C et al (2005) Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ 12:1445–1448

    PubMed  CAS  Google Scholar 

  • Zhang X, Chen J, Graham SH et al (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82:181–191

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang X, Park TS, Gidday JM (2005) Cerebral endothelial cell apoptosis after ischemia-reperfusion: role of PARP activation and AIF translocation. J Cereb Blood Flow Metab 25:868–877

    PubMed  CAS  Google Scholar 

  • Zhang Z, Yang X, Zhang S et al (2007) BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia. Stroke 38:1606–1613

    PubMed  CAS  Google Scholar 

  • Zhan RZ, Wu C, Fujihara H et al (2001) Both caspase-dependent and caspase-independent pathways may be involved in hippocampal CA1 neuronal death because of loss of cytochrome c from mitochondria in a rat forebrain ischemia model. J Cereb Blood Flow Metab 21:529–540

    PubMed  CAS  Google Scholar 

  • Zhu C, Qiu L, Wang X et al (2003) Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem 86:306–317

    PubMed  CAS  Google Scholar 

  • Zhu C, Wang X, Huang Z et al (2007) Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 14:775–784

    PubMed  CAS  Google Scholar 

  • Zychlinsky A, Sansonetti PJ (1997) Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol 5:201–204

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan I. Faden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stoica, B.A., Faden, A.I. (2010). Programmed Neuronal Cell Death Mechanisms in CNS Injury. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73226-8_12

Download citation

Publish with us

Policies and ethics