Skip to main content

Future Perspectives: New Strategies for Antagonism of Excitotoxicity, Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases

  • Chapter
Neurochemical Aspects of Excitotoxicity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2006). Lipids and lipidomics in brain injury and diseases. AAPS J. 8:E314–E321.

    PubMed  Google Scholar 

  • Afman L. and Muller M. (2006). Nutrigenomics: from molecular nutrition to prevention of disease. J. Am. Diet. Assoc. 106:569–576.

    PubMed  CAS  Google Scholar 

  • Allan S. M. and Rothwell N. J. (2003). Inflammation in central nervous system injury. Philos. Trans. R. Soc. Lond B Biol. Sci. 358:1669–1677.

    PubMed  CAS  Google Scholar 

  • Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Med. 10:S18–S25.

    PubMed  Google Scholar 

  • Andresen T. L. and Jorgensen K. (2005). Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim. Biophys. Acta Biomembr. 1669:1–7.

    CAS  Google Scholar 

  • Anrather J., Racchumi G., and Iadecola C. (2006). NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 281:5657–5667.

    PubMed  CAS  Google Scholar 

  • Araque A., Li N., Doyle R. T., and Haydon P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.

    PubMed  CAS  Google Scholar 

  • Arita M., Oh S. F., Chonan T., Hong S., Elangovan S., Sun Y. P., Uddin J., Petasis N. A., and Serhan C. N. (2006). Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J. Biol. Chem. 281:22847–22854.

    PubMed  CAS  Google Scholar 

  • Barcelò-Coblijn G., Kitajka K., Puskàs L. G., Högyes E., Zvara A., Hackler L., Jr., and Farkas T. (2003). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochim. Biophys. Acta 1632:72–79.

    PubMed  Google Scholar 

  • Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.

    CAS  Google Scholar 

  • Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Path. 15:159–166.

    CAS  Google Scholar 

  • Bazan N. G. (2005c). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.

    CAS  Google Scholar 

  • Bazan N. G. (2006). The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling. Cell. Molec. Neurobiol. 26:901–913.

    PubMed  CAS  Google Scholar 

  • Bazan N. G., Marcheselli V. L., and Cole-Edwards K. (2005). Brain response to injury and neurodegeneration-Endogenous neuroprotective signaling. In: Slikker W., Andrews R. J., and Trembly B. (eds.), Neuroprotective Agents. Annals of the New York Academy of Sciences, New York, pp. 137–147.

    Google Scholar 

  • Bechoua S., Dubois M., Vericel E., Chapuy P., Lagarde M., and Prigent A. F. (2003). Influence of very low dietary intake of marine oil on some functional aspects of immune cells in healthy elderly people. Br. J. Nutr. 89:523–531.

    PubMed  CAS  Google Scholar 

  • Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313–20316.

    PubMed  CAS  Google Scholar 

  • Berman K. and Brodaty H. (2004). Tocopherol (vitamin E) in Alzheimer’s disease and other neurodegenerative disorders. CNS Drugs 18:807–825.

    PubMed  CAS  Google Scholar 

  • Bernaudin M., Nouvelot A., MacKenzie E. T., and Petit E. (1998). Selective neuronal vulnerability and specific glial reactions in hippocampal and neocortical organotypic cultures submitted to ischemia. Exp. Neurol. 150:30–39.

    PubMed  CAS  Google Scholar 

  • Bosetti F., Bell J. M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.

    PubMed  CAS  Google Scholar 

  • Bowers-Gentry R. C., Deems R. A., Harkewicz R., and Dennis E. A. (2006). Eicosanoid lipidomics. In: Feng L. and Prestwich G. D. (eds.), Functional Lipidomics. CRC Press-Taylor & Francis Group, Boca Raton, pp. 79–100.

    Google Scholar 

  • Butterfield D. A., Perluigi M., and Sultana R. (2006). Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur. J. Pharmacol. 545:39–50.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (2004). n-3 Fatty acids, inflammation, and immunity - Relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochem. Soc. Trans. 33:423–427.

    PubMed  CAS  Google Scholar 

  • Calder P. C. (2006). n-3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83:1505S–1519S.

    PubMed  CAS  Google Scholar 

  • Calon F., Lim G. P., Yang F. S., Morihara T., Teter B., Ubeda O., Rostaing P., Triller A., Salem N. J., Ashe K. H., Frautschy S. A., and Cole G. M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645.

    PubMed  CAS  Google Scholar 

  • Chalon S. (2006). Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fatty Acids 75:259–269.

    CAS  Google Scholar 

  • Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J. C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J. Nutr. 128:2512–2519.

    PubMed  CAS  Google Scholar 

  • Champeil-Potokar G., Chaumontet C., Guesnet P., Lavialle M., and Denis I. (2006). Docosahexaenoic acid (22:6n-3) enrichment of membrane phospholipids increases gap junction coupling capacity in cultured astrocytes. Eur. J. Neurosci. 24:3084–3090.

    PubMed  Google Scholar 

  • Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.

    Google Scholar 

  • Colangelo V., Schurr J., Ball M. J., Pelaez R. P., Bazan N. G., and Lukiw W. J. (2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: Transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.

    PubMed  CAS  Google Scholar 

  • Cole G. M. and Frautschy S. A. (2006). Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health 18:249–259.

    PubMed  CAS  Google Scholar 

  • Cordain L., Eaton S. B., Sebastian A., Mann N., Lindeberg S., Watkins B. A., O’Keefe J. H., and Brand-Miller J. (2005). Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:341–354.

    PubMed  CAS  Google Scholar 

  • Correale J. and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J. Neurol. 251:1304–1316.

    PubMed  Google Scholar 

  • Craft J. M., Watterson D. M., and Van Eldik L. J. (2005). Neuroinflammation: a potential therapeutic target. Expert Opin. Ther. Targets 9:887–900.

    PubMed  CAS  Google Scholar 

  • Danbolt N. C. (2001). Glutamate uptake. Prog. Neurobiol. 65:1–105.

    PubMed  CAS  Google Scholar 

  • De Caterina R. and Massaro M. (2005). Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J. Membr. Biol. 206:103–116.

    PubMed  Google Scholar 

  • Deckelbaum R. J., Worgall T. S., and Seo T. (2006). n-3 Fatty acids and gene expression. Am. J. Clin. Nutr. 83:1520S–1525S.

    PubMed  CAS  Google Scholar 

  • Denys A., Hichami A., and Khan N. A. (2005). n-3PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κ B signaling pathway. J. Lipid Res. 46:752–758.

    PubMed  CAS  Google Scholar 

  • Dwyer B. E., Takeda A., Zhu X. W., Perry G., and Smith M. A. (2005). Ferric cycle activity and Alzheimer disease. Curr. Neurovasc. Res. 2:261–267.

    PubMed  CAS  Google Scholar 

  • Esposito E., Rotilio D., Di Matteo V., Di Giulio C., Cacchio M., and Algeri S. (2002). A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging 23:719–735.

    PubMed  CAS  Google Scholar 

  • Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: Tools for diagnosis and therapy? J. Alzheimer’s Dis. 6:177–184.

    CAS  Google Scholar 

  • Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J. E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA 97:6362–6366.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Beneficial effects of docosahexaenoic acid on health of the human brain. Agro Food Industry Hi-Tech 15:52–53.

    CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006a). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007a). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry, Lajtha, A. (ed.) Springer, New York, in press.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007b). Glycerophospholipids in the Brain: PhospholipasesA2 in Neurological Disorders, pp.1–394. Springer, New York.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: Their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    PubMed  CAS  Google Scholar 

  • Floyd R. A. and Hensley K. (2002). Oxidative stress in brain aging-Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23:795–807.

    PubMed  CAS  Google Scholar 

  • Freund-Levi Y., Eriksdotter-Jönhagen M., Cederholm T., Basun H., Faxèn-Irving G., Garlind A., Vedin I., Vessby B., Wahlund L. O., and Palmblad J. (2006). ω-3 Fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study - A randomized double-blind trial. Arch. Neurol. 63:1402–1408.

    PubMed  Google Scholar 

  • Frey R. S., Gao X., Javaid K., Siddiqui S. S., Rahman A., and Malik A. B. (2006). Phosphatidylinositol 3-kinase γ signaling through protein kinase Cζ induces NADPH oxidase-mediated oxidant generation and NF-κactivation in endothelial cells. J. Biol. Chem. 281:16128–16138.

    PubMed  CAS  Google Scholar 

  • Gasparini L., Ongini E., and Wenk G. (2004). Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J. Neurochem. 91:521–536.

    PubMed  CAS  Google Scholar 

  • German J. B., Gillies L. A., Smilowitz J. T., Zivkovic A. M., and Watkins S. M. (2007). Lipidomics and lipid profiling in metabolomics. Curr. Opin. Lipidol. 18:66–71.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2001). Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Rosenbaum Z., Melamed E., and Offen D. (2002). Antioxidant therapy in acute central nervous system injury: current state. Pharmacol. Rev. 54:271–284.

    PubMed  CAS  Google Scholar 

  • Gilgun-Sherki Y., Melamed E., and Offen D. (2006). Anti-inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr. Pharmaceut. Design 12:3509–3519.

    CAS  Google Scholar 

  • Graeber M. B. and Moran L. B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.

    PubMed  Google Scholar 

  • Grant W. B. (1997). Dietary links to Alzheimer’s disease. Alz. Disease Rev. 2:42–55.

    CAS  Google Scholar 

  • Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I., and Moller H. J. (2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease - Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural Transm. 109:837–855.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., Hossain S., Agdul H., and Shido O. (2005). Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid β-infused rats relates to the decreases of amyloid β and cholesterol levels in detergent-insoluble membrane fractions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1738:91–98.

    CAS  Google Scholar 

  • Hodge W. G., Barnes D., Schachter H. M., Pan Y. I., Lowcock E. C., Zhang L., Sampson M., Morrison A., Tran K., Miguelez M., and Lewin G. (2006). The evidence for efficacy ofomega-3 fatty acids in preventing or slowing the progression of retinitis pigmentosa: a systematic review. Can. J. Ophthalmol. 41:481–490.

    PubMed  Google Scholar 

  • Högyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. M. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.

    PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.

    PubMed  CAS  Google Scholar 

  • Horrocks L. A. and Yeo Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.

    PubMed  CAS  Google Scholar 

  • Hossain M. S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.

    PubMed  CAS  Google Scholar 

  • Hossain M. S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J. Neurochem. 72:1133–1138.

    PubMed  CAS  Google Scholar 

  • Huang M. T., Ghai G., and Ho C. T. (2004). Inflammatory process and molecular targets for anti-inflammatory nutraceuticals. Compr. Rev. Food Sci. Food Safety 3:127–139.

    CAS  Google Scholar 

  • Hunt A. N. and Postle A. D. (2006). Mass spectrometry determination of endonuclear phospholipid composition and dynamics. Methods 39:104–111.

    PubMed  CAS  Google Scholar 

  • Imbimbo B. P. (2004). The potential role of non-steroidal anti-inflammatory drugs in treating Alzheimer’s disease. Expert Opin. Invest. Drugs 13:1469–1481.

    CAS  Google Scholar 

  • Isbilen B., Fraser S. P., and Djamgoz M. B. A. (2006). Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int. J. Biochem. Cell Biol. 38:2173–2182.

    PubMed  CAS  Google Scholar 

  • Itokazu N., Ikegaya Y., Nishikawa M., and Matsuki N. (2000). Bidirectional actions of docosahexaenoic acid on hippocampal neurotransmissions in vivo. Brain Res. 862:211–216.

    PubMed  CAS  Google Scholar 

  • Jabaudon D., Scanziani M., Gahwiler B. H., and Gerber U. (2000). Acute decrease in net glutamate uptake during energy deprivation. Proc. Natl. Acad. Sci. USA 97:5610–5615.

    PubMed  CAS  Google Scholar 

  • Jellinger K. A. (2001). Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5:1–17.

    PubMed  CAS  Google Scholar 

  • Joardar A., Sen A. K., and Das S. (2006). Docosahexaenoic acid facilitates cell maturation and β-adrenergic transmission in astrocytes. J. Lipid Res. 47:571–581.

    PubMed  CAS  Google Scholar 

  • Johnson E. J. and Schaefer E. J. (2006). Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration. Am. J. Clin. Nutr. 83:1494S–1498S.

    PubMed  CAS  Google Scholar 

  • Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: reactive oxygen species - Cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.

    PubMed  CAS  Google Scholar 

  • Kalmijn S., Van Boxtel M. P. J., Ockè M., Verschuren W. M. M., Kromhout D., and Launer L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280.

    PubMed  CAS  Google Scholar 

  • Katchman A. N. and Hershkowitz N. (1993). Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores. J. Neurophysiol. 70:1–7.

    PubMed  CAS  Google Scholar 

  • Kawakita E., Hashimoto M., and Shido O. (2006). Docosahexaenoic acid promotes neurogenesis in vitro and in vivo. Neuroscience 139:991–997.

    PubMed  CAS  Google Scholar 

  • Kidd P. M. (2005). Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern. Med. Rev. 10:268–293.

    PubMed  Google Scholar 

  • Kim K. M., Jung B. H., Paeng K. J., Kim I., and Chung B. C. (2004). Increased urinary F2-isoprostanes levels in the patients with Alzheimer’s disease. Brain Res. Bull. 64:47–51.

    PubMed  CAS  Google Scholar 

  • Kimelberg H. K. and Mongin A. A. (1998). Swelling-activated release of excitatory amino acids in the brain: relevance for pathophysiology. Contrib. Nephrol. 123:240–257.

    PubMed  CAS  Google Scholar 

  • King V. R., Huang W. L., Dyall S. C., Curran O. E., Priestley J. V., and Michael-Titus A. T. (2006). Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J. Neurosci. 26:4672–4680.

    PubMed  CAS  Google Scholar 

  • Kitajka K., Puskàs L. G., Zvara A., Hackler L. J., Barcelò-Coblijn G., Yeo Y. K., and Farkas T. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl. Acad. Sci. USA 99:2619–2624.

    PubMed  CAS  Google Scholar 

  • Leist M. and Nicotera P. (1998). Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239:183–201.

    PubMed  CAS  Google Scholar 

  • Leker R. R. and Shohami E. (2002). Cerebral ischemia and trauma - different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 39:55–73.

    PubMed  Google Scholar 

  • Lim W. S., Gammack J. K., Van Niekerk J., and Dangour A. D. (2006). Omega 3 fatty acid for the prevention of dementia. Cochrane Database of Systematic Reviews 2006:Art. No. CD005379. doi:10.1002/14651858.

    Google Scholar 

  • Liu W., Liu R., Schreiber S. S., and Baudry M. (2001). Role of polyamine metabolism in kainic acid excitotoxicity in organotypic hippocampal slice cultures. J. Neurochem. 79:976–984.

    PubMed  CAS  Google Scholar 

  • Liu H. T., Tashmukhamedov B. A., Inoue H., Okada Y., and Sabirov R. Z. (2006). Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54:343–357.

    PubMed  Google Scholar 

  • Lu Y., Hong S., Gotlinger K., and Serhan C. N. (2006). Lipid mediator informatics and proteomics in inflammation-resolution. The Scientific World J. 6:589–614.

    CAS  Google Scholar 

  • Lucas S. M., Rothwell N. J., and Gibson R. M. (2006). The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147(Suppl 1):S232–S240.

    PubMed  CAS  Google Scholar 

  • Luchsinger J. A., Tang M. X., Shea S., and Mayeux R. (2003). Antioxidant vitamin intake and risk of Alzheimer disease. Arch. Neurol. 60:203–208.

    PubMed  Google Scholar 

  • Luers G. H., Thiele S., Schad A., Volkl A., Yokota S., and Seitz J. (2006). Peroxisomes are present in murine spermatogonia and disappear during the course of spermatogenesis. Histochem. Cell Biol. 125:693–703.

    PubMed  Google Scholar 

  • Lukiw W. J. and Bazan N. G. (2006). Survival signalling in Alzheimer’s disease. Biochem. Soc. Trans. 34:1277–1282.

    PubMed  CAS  Google Scholar 

  • Lukiw W. J., Cui J. G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest 115:2774–2783.

    PubMed  CAS  Google Scholar 

  • Marszalek J. R. and Lodish H. F. (2005). Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu. Rev. Cell Dev. Biol. 21:633–657.

    PubMed  CAS  Google Scholar 

  • Masters C. L., Cappai R., Barnham K. J., and Villemagne V. L. (2006). Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J. Neurochem. 97:1700–1725.

    PubMed  CAS  Google Scholar 

  • Mayer K., Schaefer M. B., and Seeger W. (2006). Fish oil in the critically ill: from experimental to clinical data. Curr. Opin. Clin. Nutr. Metab. Care 9:140–148.

    PubMed  CAS  Google Scholar 

  • McIntosh T. K., Saatman K. E., Raghupathi R., Graham D. I., Smith D. H., Lee V. M., and Trojanowski J. Q. (1998). The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.

    PubMed  CAS  Google Scholar 

  • Miggiano G. A. D. and De Sanctis R. (2006). Nutrigenomica: verso una dieta personalizzata [Nutritional genomics: toward a personalized diet]. Clin. Ter. 157:355–361.

    PubMed  CAS  Google Scholar 

  • Migliore L., Fontana I., Colognato R., Coppede F., Siciliano G., and Murri L. (2005). Searching for the role and the most suitable biomarkers of oxidative stress in Alzheimer’s disease and in other neurodegenerative diseases. Neurobiol. Aging 26:587–595.

    PubMed  CAS  Google Scholar 

  • Miller A. A., Drummond G. R., and Sobey C. G. (2006). Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol. Ther. 111:928–948.

    PubMed  CAS  Google Scholar 

  • Milne S., Ivanova P., Forrester J., and Brown H. A. (2006). Lipidomics: An analysis of cellular lipids by ESI-MS. Methods 39:92–103.

    PubMed  CAS  Google Scholar 

  • Mori T. A. (2006). Omega-3 fatty acids and hypertension in humans. Clin. Exp. Pharmacol. Physiol. 33:842–846.

    PubMed  CAS  Google Scholar 

  • Mori T. A. and Beilin L. J. (2004). Omega-3 fatty acids and inflammation. Curr. Atheroscler. Rep. 6:461–467.

    PubMed  Google Scholar 

  • Morrow J. D. (2006). The isoprostanes - Unique products of arachidonate peroxidation: Their role as mediators of oxidant stress. Curr. Pharmaceut. Design 12:895–902.

    CAS  Google Scholar 

  • Nakamura K., Kariyazono H., Komokata T., Hamada N., Sakata R., and Yamada K. (2005). Influence of preoperative administration of omega-3 fatty acid- enriched supplement on inflammatory and immune responses in patients undergoing major surgery for cancer. Nutrition 21:639–649.

    PubMed  CAS  Google Scholar 

  • Nalsen C., Vessby B., Berglund L., Uusitupa M., Hermansen K., Riccardi G., Rivellese A., Storlien L., Erkkila A., Yla-Herttuala S., Tapsell L., and Basu S. (2006). Dietary (n-3) fatty acids reduce plasma F2-isoprostanes but not prostaglandin F2α in healthy humans. J. Nutr. 136:1222–1228.

    PubMed  Google Scholar 

  • Newcomb R., Sun X. Y., Taylor L., Curthoys N., and Giffard R. G. (1997). Increased production of extracellular glutamate by the mitochondrial glutaminase following neuronal death. J. Biol. Chem. 272:11276–11282.

    PubMed  CAS  Google Scholar 

  • Nicotera P. and Leist M. (1997). Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ. 4:435–442.

    PubMed  CAS  Google Scholar 

  • Nicotera P. and Lipton S. A. (1999). Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab 19:583–591.

    PubMed  CAS  Google Scholar 

  • Ohishi H., Shigemoto R., Nakanishi S., and Mizuno N. (1993). Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335:252–266.

    PubMed  CAS  Google Scholar 

  • Olney J. W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.

    PubMed  CAS  Google Scholar 

  • Ordovas J. M. and Corella D. (2004). Nutritional genomics. Annu. Rev. Genomics Hum. Genet. 5:71–118.

    PubMed  CAS  Google Scholar 

  • Page G., Peeters M., Najimi M., Maloteaux J. M., and Hermans E. (2001). Modulation of the neuronal dopamine transporter activity by the metabotropic glutamate receptor mGluR5 in rat striatal synaptosomes through phosphorylation mediated processes. J. Neurochem. 76:1282–1290.

    PubMed  CAS  Google Scholar 

  • Park E., Velumian A. A., and Fehlings M. G. (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J. Neurotrauma 21:754–774.

    PubMed  Google Scholar 

  • Perluigi M., Poon H. F., Hensley K., Pierce W. M., Klein J. B., Calabrese V., De Marco C., and Butterfield D. A. (2005). Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice - A model of familial amyotrophic lateral sclerosis. Free Radical Biol. Med. 38:960–968.

    CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Polidori M. C. (2004). Oxidative stress and risk factors for Alzheimer’s disease: clues to prevention and therapy. J. Alzheimer’s Dis. 6:185–191.

    CAS  Google Scholar 

  • Prasad K. N., Cole W. C., Hovland A. R., Prasad K. C., Nahreini P., Kumar B., Edwards-Prasad J., and Andreatta C. P. (1999). Multiple antioxidants in the prevention and treatment of neurodegenerative disease: analysis of biologic rationale. Curr. Opin. Neurol. 12:761–770.

    PubMed  CAS  Google Scholar 

  • Puri B. K. (2005). Treatment of Huntington’s disease with eicosapentaenoic acid. In: Yehuda S. and Mostofsky D. I. (eds.), Nutrients, Stress and Medical Disorders. Nutrition and Health (Series) Humana Press Inc, Totowa, pp. 279–286.

    Google Scholar 

  • Puskàs L. G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl. Acad. Sci. USA 100:1580–1585.

    PubMed  Google Scholar 

  • Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2001). In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J. Mol. Neurosci. 16:243–261.

    PubMed  CAS  Google Scholar 

  • Rapoport S. I. (2005). In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat. 77:185–196.

    PubMed  CAS  Google Scholar 

  • Reddy P. H. (2006). Mitochondrial oxidative damage in aging and Alzheimer’s disease: Implications for mitochondrially targeted antioxidant therapeutics. J. Biomed. Biotechnol. 2006: Art. No. 31372, doi: 10.1155/JBB/2006/31372.

    Google Scholar 

  • Riederer P. and Hoyer S. (2006). From benefit to damage. Glutamate and advanced glycation end products in Alzheimer brain. J. Neural Transm. 113:1671–1677.

    PubMed  CAS  Google Scholar 

  • Roettger V. and Lipton P. (1996). Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Neuroscience 75:677–685.

    PubMed  CAS  Google Scholar 

  • Roland I., de Leval X., Evrard B., Pirotte B., Dogne J. M., and Delattre L. (2004). Modulation of the arachidonic cascade with omega 3 fatty acids or analogues: Potential therapeutic benefits. Mini-Rev. Medicin. Chem. 4:659–668.

    CAS  Google Scholar 

  • Rossi D. J., Oshima T., and Attwell D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321.

    PubMed  CAS  Google Scholar 

  • Rothwell N. J. (1999). Annual review prize lecture cytokines - killers in the brain? J. Physiol. (London) 514:3–17.

    CAS  Google Scholar 

  • Rubin B. B., Downey G. P., Koh A., Degousee N., Ghomashchi F., Nallan L., Stefanski E., Harkin D. W., Sun C. X., Smart B. P., Lindsay T. F., Cherepanov V., Vachon E., Kelvin D., Sadilek M., Brown G. E., Yaffe M. B., Plumb J., Grinstein S., Glogauer M., and Gelb M. H. (2005). Cytosolic phospholipase A2-α is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection-cPLA2-α does not regulate neutrophil NADPH oxidase activity. J. Biol. Chem. 280:7519–7529.

    PubMed  CAS  Google Scholar 

  • Samadi P., Gregoire L., Rouillard C., Bedard P. J., Di Paolo T., and Levesque D. (2006). Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann. Neurol. 59:282–288.

    PubMed  CAS  Google Scholar 

  • Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J. Neurochem. 74:1–20.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005a). Mediator lipidomics. Prostaglandins Other Lipid Mediat. 77:4–14.

    CAS  Google Scholar 

  • Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    CAS  Google Scholar 

  • Serhan C. N. (2006). Novel chemical mediators in the resolution of inflammation: Resolvins and protectins. Anesthesiol. Clinics North Am. 24:341–364.

    Google Scholar 

  • Serhan C. N., Hong S., and Lu Y. (2006). Lipid mediator informatics-lipidomics: Novel pathways in mapping resolution. AAPS J. 8:E284–E297.

    PubMed  Google Scholar 

  • Simopoulos A. P. (2002a). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21:495–505.

    CAS  Google Scholar 

  • Simopoulos A. P. (2002b). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56:365–379.

    CAS  Google Scholar 

  • Simopoulos A. P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biol. Res. 37:263–277.

    PubMed  Google Scholar 

  • Simopoulos A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.

    PubMed  CAS  Google Scholar 

  • Slusher B. S., Vornov J. J., Thomas A. G., Hurn P. D., Harukuni I., Bhardwaj A., Traystman R. J., Robinson M. B., Britton P., Lu X. C., Tortella F. C., Wozniak K. M., Yudkoff M., Potter B. M., and Jackson P. F. (1999). Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat. Med. 5:1396–1402.

    PubMed  CAS  Google Scholar 

  • Smith M. A., Nunomura A., Lee H. G., Zhu X., Moreira P. I., Avila J., and Perry G. (2005). Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol. Aging 26:579–580.

    Google Scholar 

  • Soule J., Messaoudi E., and Bramham C. R. (2006). Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34:600–604.

    Google Scholar 

  • Sun G. Y., Horrocks L. A., and Farooqui A. A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. in press. AQ[38]Please update this reference entry.

    Google Scholar 

  • Testa C. M., Standaert D. G., Young A. B., and Penney J. B., Jr. (1994). Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 14:3005–3018.

    PubMed  CAS  Google Scholar 

  • Tsutsumi T., Yamauchi E., Suzuki E., Watanabe S., Kobayashi T., and Okuyama H. (1995). Effect of a high α-linolenate and high linoleate diet on membrane-associated enzyme activities in rat brain–modulation of Na+, K+-ATPase activity at suboptimal concentrations of ATP. Biol. Pharm. Bull. 18:664–670.

    PubMed  CAS  Google Scholar 

  • Tuz K., Peña-Segura C., Franco R., and Pasantes-Morales H. (2004). Depolarization, exocytosis and amino acid release evoked by hyposmolarity from cortical synaptosomes. Eur. J. Neurosci. 19:916–924.

    PubMed  Google Scholar 

  • Valenzuela A. and Nieto M. S. (2001). Docosahexaenoic acid (DHA) in fetal development and infant nutrition. Revista Med. Chile 129:1203–1211.

    CAS  Google Scholar 

  • Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.

    PubMed  CAS  Google Scholar 

  • Wang J. Y., Wen L. L., Huang Y. N., Chen Y. T., and Ku M. C. (2006). Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharmaceut. Design 12:3521–3533.

    CAS  Google Scholar 

  • Watson A. D. (2006). Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res. 47:2101–2111.

    PubMed  CAS  Google Scholar 

  • Wendum D., Svrcek M., Rigau V., Boelle P. Y., Sebbagh N., Parc R., Masliah J., Trugnan G., and Flejou J. F. (2003). COX-2, inflammatory secreted PLA2, and cytoplasmic PLA2 protein expression in small bowel adenocarcinomas compared with colorectal adenocarcinomas. Modern Pathol. 16:130–136.

    Google Scholar 

  • Weylandt K. H. and Kang J. X. (2005). Rethinking lipid mediators. Lancet 366:618–620.

    PubMed  Google Scholar 

  • Wilde G. J. C., Pringle A. K., Wright P., and Iannotti F. (1997). Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J. Neurochem. 69:883–886.

    PubMed  CAS  Google Scholar 

  • Willcox J. K., Ash S. L., and Catignani G. L. (2004). Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 44:275–295.

    PubMed  CAS  Google Scholar 

  • Williamson P. and Schlegel R. A. (2002). Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1585:53–63.

    CAS  Google Scholar 

  • Wood P. L. (1998). Neuroinflammation: Mechanisms and Management. Humana Press, Totowa, New Jersey.

    Google Scholar 

  • Yamamoto Y. and Gaynor R. B. (2004). IκB kinases: key regulators of the NF-κB pathway. Trends Biochem. Sci. 29:72–79.

    PubMed  CAS  Google Scholar 

  • Yamazaki R., Kusunoki N., Matsuzaki T., Hashimoto S., and Kawai S. (2002). Nonsteroidal anti-inflammatory drugs induce apoptosis in association with activation of peroxisome proliferator-activated receptor γ in rheumatoid synovial cells. J. Pharmacol. Exp. Ther. 302:18–25.

    PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.

    PubMed  CAS  Google Scholar 

  • Yehuda S., Rabinovitz S., and Mostofsky D. I. (2005). Essential fatty acids and the brain: from infancy to aging. Neurobiol. Aging 26(Suppl 1):98–102.

    PubMed  Google Scholar 

  • Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure-Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.

    PubMed  CAS  Google Scholar 

  • Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V. J. (1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.

    PubMed  CAS  Google Scholar 

  • Zhang Q., Pangrsic T., Kreft M., Krzan M., Li N., Sul J. Y., Halassa M., Van Bockstaele E., Zorec R., and Haydon P. G. (2004). Fusion-related release of glutamate from astrocytes. J. Biol. Chem. 279:12724–12733.

    PubMed  CAS  Google Scholar 

  • Zhao J., Lopez A. L., Erichsen D., Herek S., Cotter R. L., Curthoys N. P., and Zheng J. (2004). Mitochondrial glutaminase enhances extracellular glutamate production in HIV-1-infected macrophages: linkage to HIV-1 associated dementia. J. Neurochem. 88:169–180.

    PubMed  CAS  Google Scholar 

  • Zhu X. W., Raina A. K., Perry G., and Smith M. A. (2004). Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol. 3:219–226.

    PubMed  CAS  Google Scholar 

  • Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J. C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J. Lipid Res. 41:32–40.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A., Ong, WY., Horrocks, L.A. (2008). Future Perspectives: New Strategies for Antagonism of Excitotoxicity, Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases. In: Neurochemical Aspects of Excitotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73023-3_11

Download citation

Publish with us

Policies and ethics