Skip to main content

High-Resolution, Low Voltage, Field-Emission Scanning Electron Microscopy (HRLVFESEM) Applications for Cell Biology and Specimen Preparation Protocols

  • Chapter

Abstract

High resolution, low-voltage, field-emission scanning electronmicroscopy (HRLVFESEM), coupled with newly-developed specimen preparation protocols has permitted novel and powerful applications for cell biology, as it allows detailed insights into small biological features due to the minimal coating requirements. It allows resolution at levels that previously could only be achieved with transmission electron microscopy (TEM) and it has made it possible to generate three-dimensional images of structures as well as interactions with macromolecular complexes without confusion of structural overlap which allows clear interpretation, particularly when stereo-imaging is applied. In this chapter several examples are presented using three specific preparation techniques that can be applied to a variety of different specimens with specimen-specific modifications. The three separate sections in this chapter are 1) Visualization of sub-membranous cytoskeletal features using cytoskeleton stabilization and membrane extraction protocols. Two examples of different specimens in this section are (1.1) subpellicular cytoskeletal structures of the apicomplexan parasite Toxoplasma gondii, and (1.2) submembraneous actin cytoskeleton in osteocytes; 2) Visualization of whole mounts and isolated cell structures. The examples presented in this section include (2.1) Visualization of isolated nuclear envelope; (2.2) visualization of isolated mitotic spindles; (2.3) visualization of centrosomes; and 3) Visualization of resin-extracted de-embedded thick sections. De-embedding of thick-sectioned biological material is a unique approach to examine the interior of cells and tissue. Serial sections can be obtained and the entire cell or tissue can be evaluated by 3-D reconstructions of thick-sectioned material. In addition, the area of interest can be tilted and viewed from various angles for accurate interpretation. The power of this unique method is demonstrated in three applications focused on: (3.1) Nuclear pore complexes (Ris and Malecki, 1993); (3.2) Muscle fibers (Ris and Malecki, 1993); (3.3) Toxoplasma parasite internal structures. All methods presented in this chapter provide unique approaches to visualize and analyze delicate biological structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa, M., Komata, Y., Asai, T., and Midorikawa, O. (1977). Transmission and scanning electron microscopy of host cell entry by Toxoplasma gondii. Am. J. of Pathology 87, 285–296.

    CAS  Google Scholar 

  • Baskin, D.G., Erlandsen, S.L., and Parsons, J.A. (1979). Influence of hydrogen peroxide or alcoholic sodium hydroxide on the immunocytochemical detection of growth hormone and prolactin after osmium fixation. J. Histochem. Cytochem. 27:1290–1292.

    PubMed  CAS  Google Scholar 

  • Bestor, T. H. and Schatten, G. (1981) Anti-tubulin immunofluorescence microscopy of microtubules present during the pronuclear movements of sea urchin fertilization. Dev. Biol. 88, 80–91.

    Article  PubMed  CAS  Google Scholar 

  • Boveri, T. (1901). Zellen-Studien IV: Ueber die Natur derCentrosomen. Jena. Zeitschr. Naturwiss. 35:1–220.

    Google Scholar 

  • Carruthers, V.B., V.B., Giddings, O.K., and Sibley, (1999). Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cell Microbiol. 1:225–235.

    Article  PubMed  CAS  Google Scholar 

  • Carruthers, V.B. and Sibley, (1997). Sequential protein secretion from three distinct organelles of Toxoplasma gondii accomnpanies invasion of human fibroblasts. Eur. J Cell Biol. 73: 114–123.

    PubMed  CAS  Google Scholar 

  • Dobrowolski, J.M., and Sibley, L.D. (1996). Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84, 933–939.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, J.P., Lindsay, D.S., and Speer, C.A. (1998). Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiol. Review 11(2), 267–299.

    CAS  Google Scholar 

  • Erlandsen, S.L., Thomas, G.W., and Wendelschaefer, G. (1973). A simple technique for correlating SEM with TEM on biological tissue originally embedded in epoxy resin for TEM. Scanning Electron Microsc. 350–356.

    Google Scholar 

  • Erlandsen, S.L., Parsons, J.A., and Rodning, C.B. (1979). Technical parameters of immunostaining of osmicated tissue in epoxy sections. J. Histochem. Cytochem. 27:1286–1289.

    PubMed  CAS  Google Scholar 

  • Franks, J., Clay, C.S., and Peace, G.W. (1980). Ion beam thin film deposition. Scanning Electron Microsc. 1:155–162.

    Google Scholar 

  • Gard, D. L. (1991) Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunofluorescence microscopy. Dev. Biol. 143, 346–362.

    Article  PubMed  CAS  Google Scholar 

  • Harris, P., Osborn, M., and Weber, K. (1980) A spiral array of microtubules in the fertilized sea urchin egg cortex examined by indirect immunofluorescence and electron microscopy. Exp. Cell Res. 126, 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Harris, P. J. (1986) Cytology and immunocytochemistry. Methods Cell Biol. 27, 243–262.

    PubMed  CAS  Google Scholar 

  • Hertzler, P. L. and Clark, W. H., Jr. (1993) The late events of fertilisation in the penaeoidean shrimp Sicyonia ingentis. Zygote 4, 287–296.

    Google Scholar 

  • Iwadare, T., Harada, E., Yoshino, S., and Arai, T. (1990). A solution for removal of resin from epoxy sections. Stain Technol. 65:205–209.

    PubMed  CAS  Google Scholar 

  • Jarnick, M., and Aebi, U. (1991). Toward a more complete 3-D structure of the nuclear pore complex. J. Struct. Biol. 107:291–308.

    Article  Google Scholar 

  • Kamioka, H., Ishihara, Y., Ris, H., Murshid, S.A., Sugawara, Y., Takano-Yamamoto, T., and Lim, S-S. (2006). Primary cultures of chick osteocytes retain functional gap junctions between osteocytes, and between osteocytes and osteoblasts. Microsc. Microanal., in press.

    Google Scholar 

  • Kemmenoe, B.H., and Bullock, G.R. (1983). Structure analysis of sputter-coated and ion-beam sputter-coated films: A comparative study. J. Microsc. 132:153–163.

    PubMed  CAS  Google Scholar 

  • Klainer, A.S., Krahenbuhl, J.L., and Remington, J.S. (1973). Scanning electron microscopy of Toxoplasma gondii. J. Gen. Microbiol. 75:111–118.

    PubMed  CAS  Google Scholar 

  • Lee, J., Miyano, T., and Moor, R. M. (2000) Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes. Biol. Reprod. 5, 1184–1192.

    Article  Google Scholar 

  • Malecki, M., and Ris, H. (1991). Preparation of cell suspensions for ultrastructural studies. Scanning 13:82–83.

    Google Scholar 

  • Malecki, M. (1992). Light microscopy of living cells correlative to high-voltage electron microscopy and low-voltage scanning electron microscopy of cell cryo-whole mounts. Proc. Annu. Meet. Electron Microsc. Soc. Am. 50:566–567.

    Google Scholar 

  • Malecki, M., and Ris, H. (1992). Surface topography and intracellular organization of human cells in suspension as revealed by scanning electron microscopy. Scanning 14:76–85.

    Google Scholar 

  • Manandhar, G., Schatten, H., and Sutovsky, P. (2005). Centrosome Reduction during Gametogenesis and its Significance. Biol. Repro., 72:2–13

    Article  CAS  Google Scholar 

  • Meng, L. and Wolf, D. P. (1997) Sperm-induced oocyte activation in the rhesus monkey: nuclear and cytoplasmic changes following intracytoplasmic sperm injection. Hum. Reprod. 5, 1062–1068.

    Article  Google Scholar 

  • Mercier, C.M., Cesbron-Delauw, M.F., and Sibley, L.D. (1998). The amphipathic alpha helices of the Toxoplasma protein GRA2 mediate post-secretory membrane association. J. Cell Sci. 111:2171–2180.

    PubMed  CAS  Google Scholar 

  • Mercier, C.M., Dubremetz, J-F., Rauscher, B., Lecordier, L., Sibley, L.D. and Cesborn-Delauw, M-F. (2002). Biogenesis of nanotubular network in Toxoplasma parasitophorous vacuole induced by parasite proteins. Mol. Biol. Cell 13:2397–2409.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, B.A., Chiappino, M.L., and O-Connor, G.R. (1983). Secretion of the rhoptries of Toxoplasma gondii during host-cell invasion. J. Ultrastr. Res. 83:85–98.

    Article  CAS  Google Scholar 

  • Pinder, J.C., Fowler, R.E., Dluzewski, A.R., Bannister, L.H., Lavin, F.M., Mitchell, G.H., Wilson, R.J., and Gratzer, W.B. (1998). Acto-myosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion (in process citation). J. Cell Sci. 111, 1831–1839.

    PubMed  CAS  Google Scholar 

  • Ris, H. (1985). The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections. J. Cell Biol.100:1474–1487.

    Article  PubMed  CAS  Google Scholar 

  • Ris, H. (1991). The three-dimensional structure of the nuclear pore complex as seen by high voltage electron microscopy and high resolution and low voltage scanning electron microscopy. Electron Microsc. Soc. Am. Bull. 21:54–56.

    Google Scholar 

  • Ris, H., and Malecki, M. (1993). High resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J. Struct. Biol. 11, 148–157.

    Article  Google Scholar 

  • Ris, H. (1998). Low voltage field emission Sem: Tool for structural cell biology. ICEM14, Electron Microscopy IV, 439–440.

    Google Scholar 

  • Rodning, C.B., Erlandsen, S.L., Coulter, H.D., and Wilson, I.D. (1980). Immunohistochemical localization of IgA antigens in sections embedded in epoxy resins. J. Histochem. Cytochem. 28:199–205.

    PubMed  CAS  Google Scholar 

  • Sabin, A.B. (1941). Toxoplasmic encephalitis in children. J. Am. Med. Assoc. 116, 801–807.

    Google Scholar 

  • Salmon, E. D. (1982) Mitotic spindles isolated from sea urchin eggs with EGTA lysis buffers. Methods Cell Biol. 25, 69–105.

    Article  PubMed  Google Scholar 

  • Schatten, H., Schatten, G., Mazia, D., et al. (1986) Behavior of centrosomes during fertilization and cell division in mouse oocytes and sea urchin eggs. Proc. Natl. Acad. Sci. USA 83,105–109.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, H., Walter, M., Mazia, D., Biessmann, H., Paweletz, N., Coffe, G., and Schatten, G. (1987). Centrosome Detection in Sea Urchin Eggs with a Monoclonal Antibody Against Drosophila Intermediate Filament Proteins: Characterization of Stages of the Division Cycle of Centrosomes. Proc. Natl. Acad. Sci. USA 84, 8488–8492.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, H., Walter, M., Biessmann, H., and Schatten, G. (1992). Activation of Maternal Centrosomes in Unfertilized Sea Urchin Eggs. Cell Motil. Cytoskel. 23, 61–70.

    Article  CAS  Google Scholar 

  • Schatten, H., Hueser, C.N., and Chakrabarti, A. (2000). From fertilization to cancer: The role of centrosomes in the union and separation of genomic material. Microscopy Research and Technique 49:420–427.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, H., and Ris, H. (2002). Unconventional specimen preparation techniques using high resolution low voltage field emission scanning electron microscopy to study cell motility, host cell invasion, and internal structures in Toxoplasma gondii. Microscopy and Microanalysis 8:94–103.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, H., Sibley. D., and Ris, H. (2003). Structural evidence for actin filaments in Toxoplasma gondii using high resolution low voltage field emission scanning electron microscopy. Microscopy and Microanalysis 9:330–335.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, H., and Ris, H. (2004). Three-dimensional Imaging of Toxoplasma gondii- Host Cell Membrane Interactions. Microscopy and Microanalysis, 10:580–585.

    Article  PubMed  CAS  Google Scholar 

  • Schatten, H., and Chakrabarti, A. (2004). Detection of centrosome structure in fertilized and artificially activated sea urchin eggs using immunofluorescence microscopy and isolation of centrosomes followed by structural characterization with field emission scanning electron microscopy. In: Methods in Molecular Biology, vol. 253: Germ Cell Protocols: Vol 1 Sperm and Oocyte Analysis. Edited by H. Schatten, Humana Press Inc, Totowa, NJ, p. 151–164.

    Google Scholar 

  • Schliwa, M., van Blerkom, Porter, K. (1981). Stabilization of the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci USA 78, 4329–4333.

    Google Scholar 

  • Schwartzmann, J.D., and Saffer, L.D. (1992). How Toxoplasma gondii gets into and out of host cells. Subcell. Biochem. 18:333–364.

    Google Scholar 

  • Shaw, M.K., Compton, H.L., Roos, D.S., and Tilney, L.G. (2000). Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii. J. Cell Sci. 113: 1241–1254.

    PubMed  CAS  Google Scholar 

  • Sibley, L.D., Krahenbuhl, J.L., Adams, G.M.W., and Weidner, E. (1986). Toxoplasma modifies macrophage phagosomes by secretion of a vesicular network rich in surface proteins. J. Cell Biol. 103:867–874.

    Article  PubMed  CAS  Google Scholar 

  • Sibley, L.D., (1995). Invasion of vertebrate cells by Toxoplasma gondii. Trends Cell Biol. 5, 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Sluder, G., Miller, F. J., Lewis, K., et al. (1989) Centrosome inheritance in starfish zygotes: selective loss of the maternal centrosome after fertilization. Dev. Biol. 131, 567–579.

    Google Scholar 

  • Staiber W. (1994) Immunofluorescence study of spindle microtubule arrangements during differential gonial mitosis of Acricotopus lucidus (Diptera, Chironomidae). Cell Struct. Funct. 19, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Striepen, B., Crawford, M.J., Shaw, M.K., Tilney, L.G., Seeber, F., and Roos, D.S. (2000). The plastid of Toxoplasma gondii is divided by association with the centrosomes.

    Google Scholar 

  • Sun, Q-Y., and Schatten, H. (2006a). Centrosome inheritance after fertilization and nuclear transfer in mammals. In: Somatic Cell Nuclear Transfer, ed: Peter Sutovsky, Landes Bioscience, in press.

    Google Scholar 

  • Sun, Q-Y., and Schatten, H. (2006b). Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 131:193–205.

    Article  CAS  Google Scholar 

  • Sun, Q-Y., and Schatten, H. (2006c). Multiple roles of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Frontiers in Bioscience 11:1137–1146.

    Article  CAS  Google Scholar 

  • Thompson-Coffe, C., Coffe, G., Schatten, H., Mazia, D., and Schatten, G. (1996). Cold-Treated Centrosome: Isolation of the Centrosomes from Mitotic Sea Urchin Eggs, Production of an Anticentrosomal Antibody, and Novel Ultrastructural Imaging. Cell Motil. Cytoskel. 33: 197–207.

    Article  CAS  Google Scholar 

  • Winborn, W.B. (1976). Removal of resins from specimens for scanning electron microscopy, in M.A. Hayat, (Ed.), Principles and Techniques of Scanning Electron Microsocpy, Vol. 5, pp. 21–35.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schatten, H. (2008). High-Resolution, Low Voltage, Field-Emission Scanning Electron Microscopy (HRLVFESEM) Applications for Cell Biology and Specimen Preparation Protocols. In: Schatten, H., Pawley, J.B. (eds) Biological Low-Voltage Scanning Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72972-5_5

Download citation

Publish with us

Policies and ethics