Vanadocene-Containing Polymers

  • Theodore S. Sabir
  • Charles E. CarraherJr.

Vanadocene derivatives are being studied as catalysts, anticancer drugs, and as spermicides. The most common reactions for vanadocene dichloride are Lewis acid-base related that are effectively employed to make both small and polymeric materials. These uses and syntheses are reviewed along with emphasizing a new product formed from the antiviral agent acyclovir.

Keywords

Vanadocene vanadocene dichloride anticancer antispermicides contraceptive agents dendrites catalysis antitumoral agents MALDI MS F MALDI MS anomalous fiber formation antiviral drugs acyclovir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kopf-Maier P, Kopf H. (1988) Struct Bonding. 70:103.Google Scholar
  2. 2.
    Kopf-Maier P. (1993) Metal complexes in cancer chemotherapy: antitumour bis(cyclopentadienyl) metal complexes. VCH, Weinheim , Germany.Google Scholar
  3. 3.
    Kopf-Maier P, Kopf H. (1994) Metal compounds in cancer therapy: organometallic titanium, vanadium, niobium, molybdenum, and rhenium complexes: early transition metal antitumour drugs. Chapman and Hall, London.Google Scholar
  4. 4.
    Christodoulou C, Eliopoulos A, Young L, Hodgkins L, Ferry D, Kerr D. (1998) Br J Cancer. 77:2088.Google Scholar
  5. 5.
    Lummen G, Sperling H, Luboldt H, Otto T, Rubben H. (1998) Cancer Chemother Pharmacol. 42:415.CrossRefGoogle Scholar
  6. 6.
    Krogeer N, Kleeberg U, Mross K, Sass G, Hossfeld D. (2000) Onkologie. 23:60.CrossRefGoogle Scholar
  7. 7.
    Kopf-Maier P, Krahl D. (1981) Naturwissenschaften. 68:273.CrossRefGoogle Scholar
  8. 8.
    Kopf-Maier P, Krahl D. (1983) Chem. Biol Interact. 44:317.CrossRefGoogle Scholar
  9. 9.
    Sun H, Li H, Weir R, Sadler P. (1998) Angew Chem Ind Ed. 37:1577.CrossRefGoogle Scholar
  10. 10.
    Kuo L, Li A, Marks T. (1996) Metal ions in biological systems: metallocene interactions with DNA and DNA-processing enzymes, Vol. 33. Marcel Dekker, New York.Google Scholar
  11. 11.
    Mokdsi G, Harding M. (2001) J Inorg Biochem. 83:205.CrossRefGoogle Scholar
  12. 12.
    Harding M, Mokdsi G. (2000) Current Medicinal Chem. 7:1289.Google Scholar
  13. 13.
    Murthy M, Rao L, Kuo L, Toney J, Marks T. (1998) Inorg Chimica Acta. 152:117.CrossRefGoogle Scholar
  14. 14.
    Djordjevic C. (1995) Metal Ions Bio Systems. 31:595.Google Scholar
  15. 15.
    Aubrecht J, Naria R, Ghosh P, Stanek J, Uckun F. (1999) Tox Applied Pharm. 154:228.CrossRefGoogle Scholar
  16. 16.
    Sakurai H, Tamura H, Okatani K. (1995) Biochem Biophys Res Commun. 206:133.CrossRefGoogle Scholar
  17. 17.
    Shi X, Wang P, Mao Y, Ahmed N, Dalal N. (1989) Ann Clin Lab Sci. 26:39.Google Scholar
  18. 18.
    Aitken R, Clarkson J, Fishel S. (1989) Biol Reprod 40:183.CrossRefGoogle Scholar
  19. 19.
    Jones R, Mann T, Sherins R. (1979) Fertil Steril. 31:531.Google Scholar
  20. 20.
    Aitken J, Fisher H. (1994) Bioessays. 16:259.CrossRefGoogle Scholar
  21. 21.
    Alvarez J, Touchstone J, Blaso L, Stoney B. (1987) J Androl 8:338.Google Scholar
  22. 22.
    D’Cruz O, Ghosh P, Uckun F. (1998) Biology Reproduction. 58:1515.CrossRefGoogle Scholar
  23. 23.
    Navara C, Benyumov A, Vassilev A, Naria R, Ghosh P, Uckun F. (2001) Anti-Cancer Drugs. 12:369.CrossRefGoogle Scholar
  24. 24.
    Lee J, Brubaker C. (1977) J Organometal Chem. 135:115.CrossRefGoogle Scholar
  25. 25.
    Tarasov O, Glebov A, Lineva A, Latyaeva V, Sal’nikov YU. (1989) Metalloogranicheskaya Khimiya 2:627.Google Scholar
  26. 26.
    Zeltner S, Dietzsch W, Olk R, et al. (1994) Zeitschrift Anorgan. Allgemeine Chemie. 620:1768.CrossRefGoogle Scholar
  27. 27.
    Vinklarek J, Honzicek J, Holubova J. (2004) Inorganic Chim Acta. 357:3765.CrossRefGoogle Scholar
  28. 28.
    Juwiler D, Neumann R. (2001) Catalysis Lets. 72:241.CrossRefGoogle Scholar
  29. 29.
    Malik N, Ducan R, Tomalia D, Esfand R. (2002) US Patent Appl. 20030064050.Google Scholar
  30. 30.
    Carraher C, Randolph E. (1997) Polym Mater Sci Eng. 77:497.Google Scholar
  31. 31.
    Carraher C, Randolph E. (1998) Polym Mater Sci Eng. 79:50.Google Scholar
  32. 32.
    Schaeffer HJ. (1976) US Patent No. 4199574.Google Scholar
  33. 33.
    Elion G, Furman P, Fyfe J, Miranda P, Beauchamp L, Schaeffer H. (1977) Proc Natl Acad Sci USA 74:5716.CrossRefGoogle Scholar
  34. 34.
    Physicians’ Desk Reference, 55 Edition. (2001) Medical Economics, Thompson Heathcare, Montville, NJ.Google Scholar
  35. 35.
    Bleicher R, Carraher C. (2002) Polym Mater Sci Eng. 86:289.Google Scholar
  36. 36.
    Carraher C, Bleicher R. (2004) In: Macromolecules containing metal and metal-like elements, Vol. 3 Wiley, Hoboken, NJ.Google Scholar
  37. 37.
    Roner M, Carraher C, Zhao A, Roehr J, Bassett K, Siegmann-Louda D. (2004) Polym Mater Sci Eng., 90:515.Google Scholar
  38. 38.
    Roner M, Carraher C, Zhao A, Roehr J, Bassett K, Siegmann-Louda D. (2003) Polym Mater Sci Eng. 89:525.Google Scholar
  39. 39.
    Sabir T, Carraher C. (2005) Polym Mater Sci Eng. 92:485.Google Scholar
  40. 40.
    Sabir T, Carraher C. (2005) Polym Mater Sci Eng. 93:396.Google Scholar
  41. 41.
    Elias H. (1984) Macromolecules, Vol. 2. Plenum, New York, p 834.Google Scholar
  42. 42.
    Carraher C. (2003) Polymer Chemistry, 6th ed. Marcel, Dekker, New York.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Theodore S. Sabir
    • 1
  • Charles E. CarraherJr.
    • 2
  1. 1.Department of ChemistryProvidence Christian CollegeOntarioUSA
  2. 2.Florida Center for Environmental StudiesPalm Beach GardensUSA

Personalised recommendations