Skip to main content

The Solar Resource

  • Chapter
  • 3746 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, A. N., ed. Allen’s Astrophysical Quantities. 4th ed., AIP Press, Springer Verlag, New York, NY., 1999.

    Google Scholar 

  2. ASTM, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, Standard E490-00a, American Society for Testing and Materials, West Conshohocken, PA, 2000.

    Google Scholar 

  3. C. Frohlich and J. Lean, Total Solar Irradiance Variations: The Construction of a Composite and it’s Comparison with Models, International Astronomical Union Symposium 185: New Eyes to See Inside the Sun and Stars, Dortrect, The Netherlands, Kluwer Academic, 1998.

    Google Scholar 

  4. C. A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models, Solar Energy,. 76(4) 423 (2004).

    Article  Google Scholar 

  5. R. L. Kurucz, Synthetic Template Spectra. Highlights of Astronomy, L. Appenzeller, ed., Vol. 10, The Hague, Netherlands, Aug 15-17, 1994, Kluwer Acad. (1995) pp. 407–409.

    Google Scholar 

  6. W. M. Farmer, The Atmospheric Filter, Vol. I., JCD Publishing, Winter Park, FL, 2001, p. 273.

    Google Scholar 

  7. C. Gueymard, Parameterized transmittance model for direct beam and circumsolar spectral irradiance, Solar Energy 71(5) 325 (2001).

    Article  Google Scholar 

  8. H. Field, Solar Cell Spectral Response Measurements Related to Spectral Bandwidth and Chopped Light Waveform, 26th IEEE Photovoltaic Specialists Conference, Institute of Electrical and Electronic Engineers, Anaheim, CA, 1997.

    Google Scholar 

  9. I. Reda, J. Hickey, C. Long, D. Myers, T. Stoffel, S. Wilcox, J. J. Michalsky, E. G. Dutton, and D. Nelson, Using a blackbody to calculate net-longwave responsivity of shortwave solar pyranometers to correct for their thermal offset error during outdoor calibra- Journal of Atmospheric and Oceanic tion using the component sum method, Technology 22 1531 (2005). The Solar Resource 39

    Article  Google Scholar 

  10. ASTM, Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Tilted Surface, Standard G177-03. 2003 American Society for Testing and Materials, West Conshohocken, PA.

    Google Scholar 

  11. ISO, Solar energy—Reference solar spectral irradiance at the ground at different receiving conditions, pt. 1. International Standard 9845-1, International Organization for Standardization, 1992.

    Google Scholar 

  12. C. Gueymard, D. Myers, and K. Emery, Proposed reference irradiance spectra for solar energy systems testing, Solar Energy,. 73(6) 443 (2002).

    Article  Google Scholar 

  13. S. Kurtz, D. Myers, T. Townsend, C. Whitaker, A. Maish, R. Hulstrom, and K. Emery, Outdoor rating conditions for photovoltaic modules and systems. Solar Energy Materials Solar Cells 62 379 (2000).

    Article  Google Scholar 

  14. Myers, D., K. Emery, C. Gueymard, Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance Evaluation. ASME Journal of Solar Energy Engineering, 2004. 126: p. 567-574.

    Google Scholar 

  15. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, Jr., H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, MODTRAN4: Radiative Transfer Modeling for Remote Sensing, in Optics in Atmospheric Propagation and Adaptive Systems III, Society of Photo-Optical Instrumentation Engineers Bellingham, WA., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Myers, D.R. (2008). The Solar Resource. In: Rajeshwar, K., McConnell, R., Licht, S. (eds) Solar Hydrogen Generation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72810-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72810-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-72809-4

  • Online ISBN: 978-0-387-72810-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics