Skip to main content

Electrochemical Nanoparticle-Based Sensors

  • Chapter
Microarrays

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Electrochemical devices are extremely useful for delivering analytical information in a fast, simple, and low-cost fashion, and are thus uniquely qualified for meeting the demands of point-of-care diagnostics. In particular, nanoparticles offer elegant ways for interfacing biomolecular recognition events with electronic signal transduction, for dramatically amplifying the resulting electrical response, and for designing novel coding strategies. Nanoparticles, such as colloidal gold or inorganic nanocrystals, offer considerable promise as quantitation tags for biological assays owing to their unique amplification and coding capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niemeyer, C.M. (2001). Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angew. Chem. Int. Ed. 40, 4128.

    Article  CAS  Google Scholar 

  2. Alivisatos, P. (2004). The use of nanocrystals in biological detection, Nature Biotechnology, 22, 47.

    Article  CAS  Google Scholar 

  3. Niemeyer, C.M. and Mirkin, C.A. (2004). Nanobiotechnology, Wiley-VCH, Weinheim.

    Google Scholar 

  4. Katz, E. and Willner, I. (2004). Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications, Angew Chemie Int. Ed. 43, 6042.

    Article  CAS  Google Scholar 

  5. Rosi, N.L., Mirkin, C.A. (2005). Nanostructures in biodiagnostics, Chem. Rev., 105, 1547.

    Article  CAS  Google Scholar 

  6. Wang, J. (2005a). Nanomaterial-based amplified transduction of biomoleular interactions. Small, 1, 1036.

    Article  CAS  Google Scholar 

  7. Han, M., et al. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol., 19, 631.

    Article  CAS  Google Scholar 

  8. Wang J. (2003a). Nanoparticle-based electrical DNA assays, Anal. Chim. Acta, 500, 247.

    Article  CAS  Google Scholar 

  9. Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., and Letsinger, R.L. (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes, J. Am. Chem. Soc. 120, 1959.

    Article  CAS  Google Scholar 

  10. Willner, I., Patolsky, F., Weizmann, Y., and Willner, B. (2002). Amplified detection of single-base mismatches in DNA using micro gravimetric quartz-crystal-microbalance transduction, Talanta, 56, 847.

    Article  CAS  Google Scholar 

  11. Wang, J. (2006). Analytical Electrochemistry (3rd Edition), Wiley, New York.

    Book  Google Scholar 

  12. Mikkelsen, S.R. (1996). Electrochemical biosensors for DNA sequence detection, Electroanalysis, 8, 15.

    Article  CAS  Google Scholar 

  13. Palecek, E. and Fojta, M. (2001). Detecting DNA hybridization and damage, Anal. Chem. 73, 75A.

    Google Scholar 

  14. Skladal P. (1997). Advances in electrochemical immunosensors, Electroanalysis, 9, 737.

    Article  CAS  Google Scholar 

  15. Taton, T.A., Mirkin, C.A., and Letsinger, R.L. (2000). Scanometric DNA array detection with nanoparticle probes, Science 289, 1757.

    Article  CAS  Google Scholar 

  16. Wang, J. (1985). Stripping Analysis, VCH, New York.

    Google Scholar 

  17. Dequaire, M., Degrand, C., and Limoges, B. (2000). An electrochemical metalloimmunoassay based on a colloidal gold label, Anal. Chem. 72, 5521.

    Article  CAS  Google Scholar 

  18. Authier, L., Grossiord, C., Berssier, P., and Limoges, B. (2001). Gold nanoparticle-based quantitative electrochemical detection of amplified human Cytomegalovirus DNA using disposable microband electrodes, Anal. Chem. 73, 4450.

    Article  CAS  Google Scholar 

  19. Hansen, J., Wang, J., Kawde, A., Xiang, Y., Gothelf, K.V., and Collins, G. (2006). Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc., 128, 2228.

    Article  CAS  Google Scholar 

  20. Wang, J., Xu, D., Kawde, A., and Polsky, R. (2001a). Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization, Anal. Chem. 73, 5576.

    Article  CAS  Google Scholar 

  21. Cai, H., Xu, Y., Zhu, N., He, P., and Fang, Y. (2002). An electrochemical DNA hybridization detection assay based on a silver nanoparticle label, Analyst, 127, 803.

    Article  CAS  Google Scholar 

  22. Wang, J., Polsky, R., and Danke, X. (2001b). Silver-enhanced colloidal gold electrical detection of DNA hybridization, Langmuir, 17, 5739.

    Article  CAS  Google Scholar 

  23. Lee, T.M.H., Li, L.L., and Hsing, I.M. (2003). Enhanced electrochemical detection of DNA hybridization based on electrode-surface modification. Langmuir, 19, 4338.

    Article  CAS  Google Scholar 

  24. Ozsoz, M., Erdem, A., Kerman, K., Okzan, D., Tugrul, B., Topcuoglo, N., Ekren, H., and Taylan, M. (2003). Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V eiden mutation using disposable pencil graphite electrodes, Anal. Chem. 75, 2181.

    Article  CAS  Google Scholar 

  25. Kawde, A. and Wang, J. (2004). Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticles tags, Electroanalysis, 16, 101.

    Article  Google Scholar 

  26. Wang, J., Li, J., Baca, A., Hu, J., Zhou, F., Yan, W., and Pang, D.W. (2003b). Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nano-particle/streptavidin conjugates, Anal. Chem. 75, 3941.

    Article  CAS  Google Scholar 

  27. Wang, J., Rincon, O., Polsky, R., and Dominguez, E. (2003c). Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster, Electrochem. Commun., 5, 83.

    Article  CAS  Google Scholar 

  28. Wang, J., Liu, G., and Merkoçi, A. (2003d). Electrochemical coding technology for simultaneous detection of multiple DNA targets, J. Am. Chem. Soc., 125, 3214.

    Article  CAS  Google Scholar 

  29. Liu, G., Wang, J., Kim, J., Jan, M., and Collins, G. (2004). Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem., 76, 7126.

    Article  CAS  Google Scholar 

  30. Escosura-Muniz, A. de la Ambrosie, A., and Merckici, A. (2008). Electrochemical analysis with nanoparticle-based biosystems, Trends Anal. Chem. 27, 568.

    Article  Google Scholar 

  31. Wang, J., Liu, G. and Polsky, R. (2002a). Electrochemical stripping detection of DNA hybridization based on CdS nanoparticle tags, Electrochemistry Commun., 4, 819.

    Google Scholar 

  32. Wang, J., Liu, G., Jan, R., and Zhu, Q. (2003e). Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags, Electrochemistry Commun., 5, 1000.

    Article  CAS  Google Scholar 

  33. Wang, J., Liu, G., and Rivas, G. (2003f). Encoded beads for electrochemical identification, Anal. Chem., 75, 4661.

    Google Scholar 

  34. Wang, J., Liu, G., and Zhou, J. (2003g). Indium microrod tags for electrical detection of DNA hybridization, Anal. Chem., 75, 6218.

    Article  CAS  Google Scholar 

  35. Dai, Z., Kawde, A., Xiang, Y., La Belle, J., Gerlach, J., Bhavanandan, V.P., Joshi, J., and Wang, J. (2006). Nanoparticle-based bioelectronic sensing of glycan-lectin interactions, J. Am. Chem. Soc., 128, 10018.

    Article  CAS  Google Scholar 

  36. Kerman, K., Saito, M., Morita, Y., Takamura, Y., Ozsoz, M., and Tamiya, E. (2004). Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles, Anal. Chem. 76, 1877.

    Article  CAS  Google Scholar 

  37. Wang, J., Lee, T., and Liu, G. (2005b), Nanocrystal-based bioelectronics coding of SNP, J. Am. Chem. Soc. 127, 38.

    Article  Google Scholar 

  38. Wang, J., Xu, D., and Polsky, R.(2002b). Magnetically-induced solid-state electrochemical detection of DNA hybridization, J. Am. Chem. Soc., 124, 4208.

    Article  CAS  Google Scholar 

  39. Palecek, E., Fojta, M., and Jelen, F. (2002). New approaches in the development of DNA sensors: Hybridization and electrochemical detection of DNA and RNA at two different surfaces, Bioelectrochemistry 56, 85.

    Article  CAS  Google Scholar 

  40. Wang, J. and Kawde, A. (2002c). Magnetic-field stimulated DNA oxidation, Electrochemistry Commun., 4, 349.

    Article  CAS  Google Scholar 

  41. Patolsky, F., Weizmann, Y., Katz, E., and Willner, I. (2003). Magnetically amplified DNA assays (MADA): Sensing of viral DNA and single-base mismatches by using nucleic acid modified magnetic particles: Angew Chemie Int. Ed. 42, 2372.

    Article  CAS  Google Scholar 

  42. Wang, J., Liu, G.D., and Merkoci, A. (2003i). Particle-based detection of DNA hybridization using electrochemical stripping measurements of an iron tracer, Anal. Chim. Acta, 482, 149.

    Article  CAS  Google Scholar 

  43. Cai, H., Zhu, N., Jiang, Y., He, P. and Fang, Y.Z. (2003), Cu-Au alloy nanoparticle as oligo nucleotides lables for electrochemical stripping detection of DNA hybridization. Bioelectronis, 18, 1311.

    Article  CAS  Google Scholar 

  44. Wang, J., Polsky, P., Merkoci, A., and Turner, K. (2003h). Electroactive beads for ultrasensitive DNA detection, Langmuir, 19, 989.

    Article  CAS  Google Scholar 

  45. Trau, D., Yang, W., Seydack, M., Carusu, F., and Renneberg, R. (2002). Nanoencapsulated microcrystalline particles for superamplified biochemical assays, Anal. Chem. 74, 5480.

    Article  CAS  Google Scholar 

  46. Park, S., Taton, T.A., and Mirkin, C.A. (2002). Array-based electrical detection of DNA with nanoparticle probes, Science, 295, 1503.

    Article  CAS  Google Scholar 

  47. Velev, O.D. and Kaler, E.W. (1999). In situ assembly of colloidal particles into miniaturized biosensors, Langmuir, 15, 3693.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation (Grant Number CHE 0506529) and NIH (R01A 1056047-01 and R01 EP 0002189) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, J. (2009). Electrochemical Nanoparticle-Based Sensors. In: Dill, K., Liu, R.H., Grodzinski, P. (eds) Microarrays. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72719-6_17

Download citation

Publish with us

Policies and ethics