Skip to main content

Photoperiodism in Insects and Other Animals

  • Chapter
Photobiology

Abstract

Many animals, particularly those living at higher latitudes, use information from day length (or night length) to regulate seasonally appropriate behavioral and developmental strategies. The most common of these are the onset of overwintering diapause in the insects, and seasonal breeding strategies in many animal groups. This chapter examines the role of light in these processes: the photoreceptive “input pathway” to the photoperiodic clock, whether that clock is a function of the circadian system, its relationship to overt behavioral circadian rhythms and, in insects, its endocrine output to diapause or continuous summer development. Major models for the photo- periodic clock are described and evaluated, particularly whether apparent hourglass-like responses represent a distinct non-circadian clock or merely a variant of a circadian-based mechanism in which constituent oscillators “damp” rather rapidly in extended periods of darkness. Finally, some recent developments in unraveling the molecular genetics of the photoperiodic response are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, J.R. and Ranson, R.M. (1932) Factors affecting the breeding of the field mouse (Microtus agrestis): I. Light. Proc. Roy. Soc. London B 110, 313–322.

    Google Scholar 

  • Belozerov, V.N. (1964) Larval diapause in the tick Ixodes ricinus L., and its relation to external conditions. Zool. Zh. 43, 1626–1637 (In Russian).

    Google Scholar 

  • Bissonnette, T.H. (1932) Modification of mammalian seasonal cycles. Reactions of ferrets (Putorius vulgaris) of both sexes to electric light added after dark in November and December. Proc. Roy. Soc. London B 110, 322–336.

    Google Scholar 

  • Bowen, M.F., Saunders, D.S., Bollenbacher, W.E. and Gilbert, L.I. (1984) In vitro reprogramming of the photoperiodic clock in an insect brain-retrocerebral complex. Proc. Natl Acad. Sci. USA 81, 5881–5884.

    Google Scholar 

  • Bünning, E. (1936) Die endogene Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Dtsch. Bot. Ges. 54, 590–607.

    Google Scholar 

  • Bünning, E. (1960) Circadian rhythms and time measurement in photoperiodism. Cold Spring Harbor Symp. Quant. Biol. 25, 249–256.

    Google Scholar 

  • Bünning, E. (1964) The physiological clock. Springer-Verlag, Berlin.

    Google Scholar 

  • Bünsow, R.C. (1953) Uber tages- und jahresrhythmische Anderungen der photoperiodischen Lichteropfindlichkeit bei Kalanchoe blossfeldiana und ihre Beziehungen zur endogonen Tagesrhythmik. Zschr. Botanik 41, 257-276.

    Google Scholar 

  • Claret, J. (1966) Mise en evidence du role photorecepteur lors de l’induction de la diapause chez Pieris brassicae (Lepido.). Ann. d’Endocrinologie 27, 311–320.

    Google Scholar 

  • Claret, J. (1989) Vitamine A et induction photoperiodique ou thermoperiodique de la diapause chez Pieris brassicae. C. R. Acad. Sci. Paris 308, 347–352.

    CAS  Google Scholar 

  • Claret, J. and Volkoff, N. (1992) Vitamin A is essential for the two processes involved in the photoperiodic reaction in Pieris brassicae. J. Insect Physiol. 38, 569–574.

    Article  CAS  Google Scholar 

  • Danks, H.V. (1987) Insect dormancy: An ecological perspective. Biological Survey of Canada (Terrestrial Arthropods), Monograph Series 1, Ottawa.

    Google Scholar 

  • Dawson, A., King, V.M., Bentley, G.E. and Ball, G.F. (2001) Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380.

    Article  PubMed  CAS  Google Scholar 

  • Denlinger, D.L. (1971) Embryonic determination of pupal diapause in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 17, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  • Denlinger, D.L. (1985) Hormonal control of diapause. In: G.A. Kerkut and L.I. Gilbert (Eds.), Comprehensive insect physiology, biochemistry and pharmacology, vol. 8. Pergamon Press, Oxford, pp. 353–412.

    Google Scholar 

  • Denlinger, D.L. (1991) Relationship between cold hardiness and diapause. In: Insects at Low Temperature, R.E. Lee Jr. and D.L. Denlinger (Eds.), Chapman & Hall, New York, pp. 174–198.

    Google Scholar 

  • Dumortier, B. and Brunnarius, J. (1989) Diet-dependent switch from circadian to hourglass-like operation of an insect photoperiodic clock. J. Biol. Rhythms 4, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J.A. (1976) Circadian rhythms and photoperiodic time measurement in mammals. Federation Proc. 35, 2339–2346.

    CAS  Google Scholar 

  • Ferenz, H.J. (1975) Photoperiodic and hormonal control of reproduction in male beetles, Pterostichus nigrita. J. Insect Physiol. 21, 331–341.

    Article  CAS  Google Scholar 

  • Gao, N., Von Schantz, M., Foster, R.G. and Hardie, J. (1999) The putative brain photoperiodic photoreceptors in the vetch aphid, Megoura viciae. J. Insect Physiol. 45, 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Garner, W.W. and Allard, H.A. (1920) Effect of the relative length of the day and night and other factors on growth and reproduction in plants. J. Agric. Res. 18, 553–606.

    Google Scholar 

  • Goldman, B. D. (2001) Mammalian photoperiodic systems: Formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J. Biol. Rhythms 16, 283–301.

    Google Scholar 

  • Hamner, W.M. (1963) Diurnal rhythms and photoperiodism in testicular recrudescence of the house finch. Science 142, 1294–1295.

    Article  PubMed  Google Scholar 

  • Hardie, J. (1990) The photoperiodic counter, quantitative day-length effects and scotophase timing in the vetch aphid Megoura viciae. J. Insect Physiol. 36, 939–949.

    Article  Google Scholar 

  • Hasegawa, K. and Shimizu, I. (1987) In vivo and in vitro photoperiodic induction of diapause using isolated brain-suboesophageal ganglion complexes of the silkworm, Bombyx mori. J. Insect Physiol. 33, 959–966.

    Article  Google Scholar 

  • Helfrich-Förster, C. (2001) The locomotor activity rhythm of Drosophila melanogaster is controlled by a dual oscillator system. J. Insect Physiol. 47, 877–887.

    Article  Google Scholar 

  • Hillman, W.S. (1964) Endogenous circadian rhythms and the response of Lemna perpusilla to skeleton photoperiods. Am. Naturalist 98, 323–328.

    Google Scholar 

  • Johnsson, A. and Karlsson, H.G. (1972) A feedback model for biological rhythms. I—Mathematical description and basic properties of the model. J. Theor. Biol. 36, 153–174.

    Article  PubMed  CAS  Google Scholar 

  • Joosse, J. (1984) Photoperiodicity, rhythmicity and endocrinology of reproduction in the snail Lymnaea stagnalis. In: Photoperiodic regulation of insect and molluscan hormones. Ciba Foundation Symposium 104, pp. 204–220.

    CAS  Google Scholar 

  • Kimura, Y. and Masaki, S. (1993) Hourglass and oscillator expression of photoperiodic diapause response in the cabbage moth Mamestra brassicae. Physiol. Entomol. 18, 240–246.

    Google Scholar 

  • Kogure, M. (1933) The influence of light and temperature on certain characters of the silk-worm, Bombyx mori. J. Dept Agriculture, Kyushu University 4, 1–93.

    Google Scholar 

  • Konopka, R., Pittendrigh, C.S. and Orr, D. (1989) Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenetics 6, 1–10.

    Google Scholar 

  • Koštàl, V. (2006) Eco-physiological phases of insect diapause. J. Insect Physiol. 52, 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Lankinen, P. (1986) Geographical variation in circadian eclosion rhythms and photo- periodic adult diapause in Drosophila littoralis. J. Comp. Physiol. A 159, 123–142.

    Article  Google Scholar 

  • Lankinen, P. and Forsman, P. (2006) Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. J. Biol. Rhythms 21, 1–10.

    Google Scholar 

  • Lees, A.D. (1953) The significance of the light and dark phases in the photoperiodic control of diapause in Metatetranychus ulmi Koch. Ann. Appl. Biol. 40, 487–497.

    Article  Google Scholar 

  • Lees, A.D. (1964) The location of the photoperiodic receptors in the aphid Megoura viciae. J. Exp. Biol. 41, 119–133.

    PubMed  CAS  Google Scholar 

  • Lees, A.D. (1966) Photoperiodic timing mechanisms in insects. Nature 210, 986–989.

    Article  PubMed  CAS  Google Scholar 

  • Lees, A.D. (1971) The relevance of action spectra in the study of insect photoperiodism. In: M. Menaker (Ed.), Biochronometry. National Academy of Science, Washington, DC, pp. 372–380.

    Google Scholar 

  • Lees, A.D. (1973) Photoperiodic time measurement in the aphid Megoura viciae. J. Insect Physiol. 19, 2279–2316.

    Article  Google Scholar 

  • Lewis, R.D. (2002) Quantitative models for insect clocks. In: D.S. Saunders (Ed.), Insect clocks, 3rd ed. Elsevier, Amsterdam, pp. 213–243.

    Google Scholar 

  • Lewis, R.D. and Saunders, D.S. (1987) A damped circadian oscillator model of an insect photoperiodic clock. I. Description of the model based on a feedback control system. J. Theor. Biol. 128, 47–59.

    Google Scholar 

  • Lumme, J. (1978) Phenology and photoperiodic diapause in northern populations of Drosophila. In H. Dingle (Ed.) Evolution of Insect Migration and Diapause, pp. 145–170. Springer-Verlag, New York.

    Google Scholar 

  • Marcovitch, S. (1923) Plant lice and light exposure. Science 58, 537–538.

    Article  PubMed  Google Scholar 

  • Marcovitch, S. (1924) The migration of the Aphididae and the appearance of the sexual forms as affected by the relative length of daily light exposure. J. Agric. Res. 27, 513–522.

    Google Scholar 

  • Masaki, S. (1984) Unity and diversity in insect photoperiodism. In: Photoperiodic regulation of insect and molluscan hormones. Ciba Foundation symposium 104, 7–25.

    Google Scholar 

  • Nishizuka, M., Azuma, A. and Masaki, S. (1998) Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomol. Sci. 1, 7–14.

    Google Scholar 

  • Numata, H. and Hidaka, T. (1987) Photoreceptors for photoperiodism in the bean bug, Riptortus clavatus. Rostria 38, 571–580.

    Google Scholar 

  • Pittendrigh, C.S. (1966) The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Zschr. Pflanzenphysiol. 54, 275–307.

    Google Scholar 

  • Pittendrigh, C.S. (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc.Natl Acad. Sci. USA 69, 2734–2737.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C.S. and Minis, D.H. (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Naturalist 98, 261–294.

    Article  Google Scholar 

  • Richard, D.S., Watkins, N.L., Serafin, R.B. and Gilbert, L.I. (1998) Ecdysteroids regulate yolk protein uptake by Drosophila melanogaster oocytes. J. Insect Physiol. 44, 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Rieger, D., Stanewsky, R. and Helfrich-Förster, C. (2003) Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18, 377–391.

    Article  PubMed  CAS  Google Scholar 

  • Rowan, W. (1926) On photoperiodism, reproductive periodicity and the annual migration of birds and certain fishes. Proc. Boston Soc. Natural History 38, 147–189.

    Google Scholar 

  • Sabrosky, C.W., Larson, I. and Nabours, R.K. (1933) Experiments with light upon reproduction, growth and diapause in grouse locusts. Trans. Kansas Acad. Sci. 36, 298–300.

    Article  Google Scholar 

  • Saunders, D.S. (1966) Larval diapause of maternal origin—II. The effect of photoperiod and temperature on Nasonia vitripennis. J. Insect Physiol. 12, 569–581.

    Article  Google Scholar 

  • Saunders, D.S. (1973) The photoperiodic clock in the flesh-fly, Sarcophaga argyrostoma. J. Insect Physiol. 19, 1941–1954.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S. (1974) Evidence for ‘dawn’ and ‘dusk’ oscillators in the Nasonia photoperiodic clock. J. Insect Physiol. 20, 77–88.

    Article  Google Scholar 

  • Saunders, D.S. (1975) ‘Skeleton’ photoperiods and the control of diapause and development in the flesh-fly, Sarcophaga argyrostoma. J. Comp. Physiol. 97, 97–112.

    Article  Google Scholar 

  • Saunders, D.S. (1978) An experimental and theoretical analysis of photoperiodic induction in the flesh-fly Sarcophaga argyrostoma. J. Comp. Physiol. 124, 75–95.

    Article  Google Scholar 

  • Saunders, D.S. (1979) External coincidence and the photoinducible phase in the Sarcophaga photoperiodic clock. J. Comp. Physiol. 132, 179–189.

    Article  Google Scholar 

  • Saunders, D.S. (1981) Insect photoperiodism: the clock and the counter. Physiol. Entomol. 6, 99–116.

    Google Scholar 

  • Saunders, D.S. (1982) Photoperiodic induction of pupal diapause in Sarcophaga argyrostoma: temperature effects on circadian resonance. J. Insect Physiol. 28, 305–310.

    Article  Google Scholar 

  • Saunders, D.S. (1986) Many circadian oscillators regulate developmental and behavioural events in the flesh fly Sarcophaga argyrostoma. Chronobiol. Int. 3, 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S. (1987) Maternal influence on the incidence and duration of larval diapause in Calliphora vicina. Physiol. Entomol. 12, 331–338.

    Google Scholar 

  • Saunders, D.S. (1990) The circadian basis of ovarian diapause regulation in Drosophila melanogaster: is the period gene causally involved in photoperiodic time measurement? J. Biol. Rhythms 5, 315–331.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S. (1992) The photoperiodic clock and “counter” in Sarcophaga argyrostoma: experimental evidence consistent with “external coincidence” in insect photoperiodism. J. Comp. Physiol. 170, 121–127.

    Article  Google Scholar 

  • Saunders, D.S. (1997) Insect circadian rhythms and photoperiodism. Invertebrate Neurosci. 3, 155–164.

    Article  CAS  Google Scholar 

  • Saunders, D.S. (2000) Arthropoda – Insecta: Diapause. In: A. Dorn (Ed.), Reproductive biology of the invertebrates, Vol. X, Part B. John Wiley & Sons Ltd, Chichester, pp. 145–184.

    Google Scholar 

  • Saunders, D.S. (2002) Insect clocks, 3rd ed. Elsevier, Amsterdam.

    Google Scholar 

  • Saunders, D.S. (2005) Erwin Bünning and Tony Lees, two giants of chronobiology, and the problem of time measurement in insect phtoperiodism. J. Insect Physiol. 51, 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S. and Cymborowski, B. (1996) Removal of optic lobes of adult blow flies (Calliphora vicina) leaves photoperiodic induction of larval diapause intact. J. Insect Physiol. 42, 807–811.

    Article  CAS  Google Scholar 

  • Saunders, D.S. and Cymborowski, B. (2003) Selection for high diapause incidence in blow flies (Calliphora vicina) maintained under long days increases the maternal critical daylength: some consequences for the photoperiodic clock. J. Insect Physiol. 49, 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S. and Gilbert, L.I. (1990) Regulation of ovarian diapause in the fruit fly Drosophila melanogaster by photoperiod at moderately low temperature. J. Insect Physiol. 36, 195–200.

    Article  Google Scholar 

  • Saunders, D.S. and Lewis, R.D. (1987a) A damped circadian oscillator model of an insect photoperiodic clock. II. Simulations of the shapes of the photoperiodic response curves. J. Theor. Biol. 128, 61–71.

    Google Scholar 

  • Saunders, D.S. and Lewis, R.D. (1987b) A damped circadian oscillator model of an insect photoperiodic clock. III. Circadian and “hourglass” responses. J. Theor. Biol. 128, 73–85.

    Google Scholar 

  • Saunders, D.S., Henrich, V.C. and Gilbert, L.I. (1989) Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl Acad. Sci. USA 86, 3748–3752.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, D.S., Gillanders, S.W. and Lewis, R.D. (1994) Light-pulse phase response curves for the locomotor activity rhythm in period mutants of Drosophila melanogaster. J. Insect Physiol. 40, 957–968.

    Article  CAS  Google Scholar 

  • Saunders, D.S., Lewis, R.D. and Warman, G.R. (2004) Photoperiodic induction of diapause: opening the black box. Physiol. Entomol. 29, 1–15.

    Article  Google Scholar 

  • Saunders, D.S., Richard, D.S., Applebaum, S.W., Ma, M. and Gilbert, L.I. (1990) Photo- periodic diapause in Drosophila melanogaster involves a block to the juvenile hormone regulation of ovarian maturation. Gen. Comp. Endocrin. 79, 174–184.

    Article  CAS  Google Scholar 

  • Shiga, S. and Numata, H. (1996) Effects of compound eye removal on the photoperiodic response of the band-legged ground cricket, Pteronemobius nigrofasciatus. J. Comp. Physiol. A 179, 625–633.

    Google Scholar 

  • Shiga, S. and Numata, H. (1997) Induction of reproductive diapause via perception of photoperiod through the compound eyes of the adult blow fly, Protophormia terraenovae. J. Comp. Physiol. A 181, 35–40.

    Article  Google Scholar 

  • Shimizu, I. (1982) Photoperiodic induction in the silkworm, Bombyx mori, reared on artificial diet: evidence for extraretinal photoreception. J. Insect Physiol. 28, 841–846.

    Article  Google Scholar 

  • Shimizu, I. and Hasegawa, K. (1988) Photoperiodic induction of diapause in the silkworm, Bombyx mori: location of the photoreceptor using a chemiluminescent paint. Physiol. Entomol. 13, 81-88.

    Google Scholar 

  • Shimizu, I. and Kato, M. (1984) Carotenoid functions in photoperiodic induction in the silkworm, Bombyx mori. Photobiochem. Photobiophys. 7, 47–52.

    CAS  Google Scholar 

  • Shimizu, I., Yamakawa, Y., Shimazaki, Y. and Iwasa, T. (2001) Molecular cloning of Bombyx cerebral opsin (Boceropsin) and cellular localization of its expression in the silkworm brain. Biochem. Biophys. Res. Commun. 287, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Steel, C.G.H. and Lees, A.D. (1977) The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. J. Exp. Biol. 67, 117–135.

    PubMed  CAS  Google Scholar 

  • Stoleru, D., Peng, Y., Agosto, J. and Rosbash, M. (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Stoleru, D., Peng, Y., Nawathean, P. and Rosbash, M. (2005) A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438, 238–242.

    Article  PubMed  CAS  Google Scholar 

  • Stross, R.G. and Hill, J.C. (1968) Photoperiod control of winter diapause in the fresh water crustacean, Daphnia. Biol. Bull. Marine Biological Lab., Woods Hole 134, 176–198.

    Article  Google Scholar 

  • Takeda, M. (1978) Photoperiodic time measurement and seasonal adaptation of the South-western corn borer, Diatraea grandiosella Dyar (Lepidoptera: Pyralidae). Ph.D. thesis, University of Missouri–Columbia.

    Google Scholar 

  • Tauber, M.J., Tauber, C.A. and Masaki, S. (1986) Seasonal adaptations of insects. Oxford University Press, Oxford.

    Google Scholar 

  • Thiele, H-U. (1977) Differences in measurement of daylength and photoperiodism in two stocks from sub-arctic and temperate climates in the carabid beetle, Pterostichus nigrita F. Oecologia (Berlin) 30, 349–365.

    Article  Google Scholar 

  • Underwood, H. and Goldman, B.D. (1987) Vertebrate circadian and photoperiodic systems: role of the pineal gland and melatonin. J. Biol. Rhythms 2, 279–315.

    Article  PubMed  CAS  Google Scholar 

  • Van Zon, A.Q., Overmeer, W.P.J. and Veerman, A. (1981) Carotenoids are functionally involved in photoperiodic induction of diapause in a predacious mite. Science 213, 1131–1133.

    Article  Google Scholar 

  • Vaz Nunes, M. and Saunders, D.S. (1999) Photoperiodic time measurement in insects: a review of clock models. J. Biol. Rhythms 14, 84–104.

    Article  PubMed  CAS  Google Scholar 

  • Vaz Nunes, M. and Veerman, A. (1982) Photoperiodic time measurement in the spider mite Tetranychus urticae: A novel concept. J. Insect Physiol. 28, 1041–1053.

    Article  Google Scholar 

  • Vaz Nunes, M., Kenny, N.A.P. and Saunders, D.S. (1990) The photoperiodic clock in the blowfly Calliphora vicina. J. Insect Physiol. 36, 61–67.

    Article  Google Scholar 

  • Veerman, A. (1977) Aspects of the induction of diapause in a laboratory strain of the mite Tetranychus urticae. J. Insect Physiol. 23, 703–711.

    Article  Google Scholar 

  • Veerman, A. (1980) Functional involvement of carotenoids in photoperiodic induction of diapause in the spider mite, Tetranychus urticae. Physiol. Entomol. 5, 291–300.

    CAS  Google Scholar 

  • Veerman, A., Overmeer, W.P.J., Van Zon, A.Q., De Boer, J.M., De Waard, E.R. and Huisman, H.O. (1983) Vitamin A is essential for photoperiodic induction of diapause in an eyeless mite. Nature 302, 248–249.

    Article  CAS  Google Scholar 

  • Veerman, A., Slagt, M.E., Alderliest, M.F.J. and Veenendaal, R.L. (1985) Photoperiodic induction of diapause in an insect is vitamin A dependent. Experientia 41, 1194–1195.

    Article  CAS  Google Scholar 

  • Veerman, A. and Vaz Nunes, M. (1980) Circadian rhythmicity participates in the photo- periodic determination of diapause in spider mites. Nature 287, 140–141.

    Article  Google Scholar 

  • Veerman, A. and Vaz Nunes, M. (1987) Analysis of the operation of the photo- periodic counter provides evidence for hourglass time measurement in the spider mite Tetranychus urticae. J. Comp. Physiol. A 160, 421–430.

    Article  Google Scholar 

  • Vinogradova, E.B. and Zinovjeva, K.B. (1972) Maternal induction of larval diapause in the blowfly, Calliphora vicina. J. Insect Physiol. 18, 2401–2409.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, N. L. (2001) Regulation of seasonal reproduction in mollusks. Biol. Rhythms 16, 391–402.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saunders, D. (2008). Photoperiodism in Insects and Other Animals. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_15

Download citation

Publish with us

Policies and ethics