Skip to main content

Patterns and Mechanisms of Noise-Induced Cochlear Pathology

  • Chapter
Book cover Auditory Trauma, Protection, and Repair

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 31))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem 245:4641–4646.

    PubMed  CAS  Google Scholar 

  • Bielefeld EC, Hu BH, Harris KC, Henderson D (2005) Damage and threshold shift resulting from cochlear exposure to Paraquat-generated superoxide. Hear Res 207:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Bohne BA (1976) Mechanisms of noise damage in the inner ear. In: Henderson D, Hamernik RP, Dosanjh D, Mills, J (eds) Effects of Noise on Hearing. New York: Raven Press, pp. 41–68.

    Google Scholar 

  • Bohne BA, Clark WW (1982) Growth of hearing loss and cochlear lesion with increasing duration of noise exposure. In: Hamernik RP, Henderson D, Salvi RJ (eds) New Perspectives on Noise-Induced Hearing Loss. New York: Raven Press, pp. 283–302.

    Google Scholar 

  • Borg E (1982) Protective value of sympathectomy of the ear in noise. Acta Physiol Scand 115:281–282.

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Electron Microsc(Pt 3):1401–1406.

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    PubMed  CAS  Google Scholar 

  • Chen GD, Fechter LD (1999) Potentiation of octave-band noise induced auditory impairment by carbon monoxide. Hear Res 132:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Cody AR, Russell IJ (1985) Outer hair cells in the mammalian cochlea and noise-induced hearing loss. Nature 315:662–665.

    Article  PubMed  CAS  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326 (Pt 1):1–16.

    PubMed  CAS  Google Scholar 

  • Davis H (1952) Neuroanatomy and neurophysiology in the cochlea. Trans Am Acad Ophthalmol Otolaryngol 56:630–634.

    PubMed  CAS  Google Scholar 

  • Davis H, Morgan CT, Hawkins JE Jr, Galambos R, Smith FW (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol Suppl 88:1–56.

    PubMed  CAS  Google Scholar 

  • Fessenden JD, Schacht J (1998) The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology. Hear Res 118:168–176.

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook, NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B, Gutteridge J (1999) Free Radicals in Biology and Disease. Oxford: Oxford University Press.

    Google Scholar 

  • Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 13:229–247.

    Article  PubMed  CAS  Google Scholar 

  • Hamernik RP, Turrentine G, Roberto M (1985) Mechanically induced morphological changes in organ of Corti. In Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 69–84.

    Google Scholar 

  • Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80:569–584.

    Article  PubMed  CAS  Google Scholar 

  • Henderson D, Subramaniam M, Gratton MA, Saunders SS (1991) Impact noise: the importance of level, duration, and repetition rate. J Acoust Soc Am 89:1350–1357.

    Article  PubMed  CAS  Google Scholar 

  • Henderson D, Subramaniam M, Boettcher FA (1993) Individual susceptibility to noise-induced hearing loss: an old topic revisited. Ear Hear 14:152–168.

    Article  PubMed  CAS  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19.

    Article  PubMed  Google Scholar 

  • Hildesheimer M, Sharon R, Muchnik C, Sahartov E, Rubinstein M (1991) The effect of bilateral sympathectomy on noise induced temporary threshold shift. Hear Res 51:49–53.

    Article  PubMed  CAS  Google Scholar 

  • Hildesheimer M, Henkin Y, Pye A, Heled S, Sahartov E, Shabtai EL, Muchnik C (2002) Bilateral superior cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs. Hear Res 163:46–52.

    Article  PubMed  Google Scholar 

  • Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166:62–71.

    Article  PubMed  Google Scholar 

  • Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci USA 76:1506–1509.

    Article  PubMed  CAS  Google Scholar 

  • Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Kallinen J, Didier A, Miller JM, Nuttall A, Grenman R (1991) The effect of CO2- and O2-gas mixtures on laser Doppler measured cochlear and skin blood flow in guinea pigs. Hear Res 55:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th ed. New York: McGraw-Hill Health Professions Division.

    Google Scholar 

  • Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072.

    Article  PubMed  CAS  Google Scholar 

  • Konishi K, Yamane H, Iguchi H, Takayama M, Nakagawa T, Sunami K , Nakai Y (1998) Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl 538:40–46.

    Article  PubMed  CAS  Google Scholar 

  • Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res 141:199–219.

    Article  PubMed  CAS  Google Scholar 

  • Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall, AL (1993) Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 64:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Laurikainen EA, Costa O, Miller JM, Nuttall AL, Ren TY, Masta R, Quirk WS, Robinson PJ (1994) Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 480:563–573.

    PubMed  CAS  Google Scholar 

  • Laurikainen EA, Ren T, Miller JM, Nuttall AL, Quirk WS (1997) The tonic sympathetic input to the cochlear vasculature in guinea pig. Hear Res 105:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Liberman MC, Dodds LW, Learson DA (1985) Structure–function correlation in noise-damaged ears. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press,pp. 163–178.

    Google Scholar 

  • Miller JM, Dengerink H (1988) Control of inner ear blood flow. Am J Otolaryngol 9:302–316.

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Ren TY, Nuttall AL (1995) Studies of inner ear blood flow in animals and human beings. Otolaryngol Head Neck Surg 112:101–113.

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Brown JN, Schacht J (2003) 8-iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8:207–221.

    Article  PubMed  CAS  Google Scholar 

  • Mills JH, Adkins WY, Gilbert RM (1981) Temporary threshold shifts produced by wideband noise. J Acoust Soc Am 70:390–396.

    Article  PubMed  CAS  Google Scholar 

  • Minami SB, Yamashita D, Schacht J, Miller JM (2004) Calcineurin activation contributes to noise-induced hearing loss. J Neurosci Res 78:383–392.

    Article  PubMed  CAS  Google Scholar 

  • Nagahara K, Aoyama T, Fukuse S, Noi O (1988) Effects of prostaglandins on perilymphatic oxygenation. Enhancement of cochlear autoregulation by prostacyclin. Acta Otolaryngol Suppl 456:143–150.

    Article  PubMed  CAS  Google Scholar 

  • Nicotera T, Henderson D, Zheng XY, Ding DL, McFadden SL (1999) Reactive oxygen species, apoptosis and necrosis in noise-exposed cochleas of chinchillas. Paper presented at the 22nd Annual Midwinter Meeting of the Association for Research in Otolaryngology, St. Petersburg, FL.

    Google Scholar 

  • Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4:466–477.

    Article  PubMed  Google Scholar 

  • Nicotera TM, Ding D, McFadden SL, Salvemini D, Salvi R (2004) Paraquat-induced hair cell damage and protection with the superoxide dismutase mimetic m40403. Audiol Neurootol 9:353–362.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30.

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller KK, Wright JS, Dugan LL (1999) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236.

    Article  PubMed  CAS  Google Scholar 

  • Perlman H, Kimura R (1962) Cochlear blood flow in acoustic trauma. Acta Otolaryngolica 54:99–110.

    Article  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1985) The morphology of stereocilia and their cross-links in relation to noise damage in the guinea pig. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 31–42.

    Google Scholar 

  • Puel JL, d’Aldin CG, Saffiende S, Eybalin M, Pujol R (1996) Excitotoxicity and plasticity of IHC-auditory nerve contributes to both temporary and permanent threshold shift. In: Axelsson A, Borchgrevink HM, Hamernik RP, Hellström PA, Henderson D, Salvi RJ (eds) Scientific Basis of Noise-induced Hearing Loss. New York: Thieme, pp. 36–42.

    Google Scholar 

  • Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport 9:2109–2114.

    Article  PubMed  CAS  Google Scholar 

  • Pujol R, Puel JL, d’Aldin CG, Eybalin M (1990) Physiopathology of the glutaminergic synapses in the cochlea. Acta Otolaryngol Suppl 476:32–36.

    PubMed  CAS  Google Scholar 

  • Pujol R, Puel JL, Gervais d’Aldin C, Eybalin M (1993) Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 113:330–334.

    Article  PubMed  CAS  Google Scholar 

  • Quaranta A, Portalatini P, Henderson D (1998) Temporary and permanent threshold shift: an overview. Scand Audiol Suppl 48:75–86.

    PubMed  CAS  Google Scholar 

  • Rajan R (1996) Involvement of cochlear efferent pathways in protective effects elicited with binaural loud sound exposure in cats. J Neurophysiol 74:582–597.

    Google Scholar 

  • Rajan R, Johnstone BM (1983) Crossed cochlear influences on monaural temporary threshold shifts. Hear Res 9:279–294.

    Article  PubMed  CAS  Google Scholar 

  • Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73:506–514.

    PubMed  CAS  Google Scholar 

  • Ren TY, Laurikainen E, Quirk WS, Miller JM, Nuttall AL (1993) Effects of electrical stimulation of the superior cervical ganglion on cochlear blood flow in guinea pig. Acta Otolaryngol 113:146–151.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Canlon B, Flock A (1985) Mechanical changes in stereocilia following overstimulation. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 11–30.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100.

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin H (1985) Histopathology of noise deafness. J Otolaryngol 14:282–286.

    PubMed  CAS  Google Scholar 

  • Sweeney MH, Fosbroke D, Goldenhar LM, Jackson LL, Lushniak BD, Merry L, Schneider, S, Stephenson, M (2005) Health consequences working in construction. In: Coble R, Hinze J, Haupt T (eds) Construction Safety and Health Management. Columbus, OH: Prentice-Hall, pp: 178–196.

    Google Scholar 

  • Thalmann R, Miyoshi T, Kusakari J, Ise I (1975) Normal and abnormal energy metabolism of the inner ear. Otolaryngol Clin North Am 8:313–333.

    PubMed  CAS  Google Scholar 

  • Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Ugnell AO, Hasegawa M, Lundquist PG, Andersson R (2000) Effect of carbon dioxide on cochlear blood flow in guinea pigs. Acta Otolaryngol 120:11–18.

    Article  PubMed  CAS  Google Scholar 

  • Vicente-Torres MA, Schacht J (2006) A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 83:1564–1572.

    Article  PubMed  CAS  Google Scholar 

  • von Békésy G (1952) Direct observation of the vibrations of the cochlear partition under a microscope. Acta Otolaryngol 42:197–201.

    Article  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268.

    Article  PubMed  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Ward WD (1966) The use of TTS in derivation of damage risk criteria for noise exposure. Intern Aud 5:309–313.

    Article  Google Scholar 

  • Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, Shibata S, Kato A, Sunami K, Kawakatsu C (1995) The emergence of free radicals after acoustic trauma and strial blood flow. Acta Otolaryngol Suppl 519:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209.

    Article  PubMed  CAS  Google Scholar 

  • Yang WP, Henderson D, Hu BH, Nicotera TM (2004) Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hear Res 196:69–76.

    Article  PubMed  Google Scholar 

  • Zheng XY, Henderson D, Hu BH, Ding DL, McFadden SL (1997a) The influence of the cochlear efferent system on chronic acoustic trauma. Hear Res 107:147–159.

    Article  CAS  Google Scholar 

  • Zheng XY, Henderson D, Hu BH, McFadden SL (1997b) Recovery of structure and function of inner ear afferent synapses following kainic acid excitotoxicity. Hear Res 105:65–76.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Henderson, D., Hu, B., Bielefeld, E. (2008). Patterns and Mechanisms of Noise-Induced Cochlear Pathology. In: Schacht, J., Popper, A.N., Fay, R.R. (eds) Auditory Trauma, Protection, and Repair. Springer Handbook of Auditory Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72561-1_7

Download citation

Publish with us

Policies and ethics