Magnesium and Its Alloys

  • Frank Czerwinski

Magnesium belongs to alkaline earth metals, which occupy the second main group of the periodic table of elements. It was discovered in the eighteenth century and named after the ancient Greek district of Magnesia in Thessaly (Table 1.1). This silvery-white metal is the eighth most abundant element, comprising 2.7% of earth's crust. Due to high reactivity, magnesium is not found in elemental form in nature but only in chemical complexes, widely distributed in rock structures, seawater and lake brines.


Magnesium Alloy Equal Channel Angular Pressing Equal Channel Angular Extrusion AZ91D Alloy Twin Roll Casting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shukun M et al (2005) Uplift China’s Pidgeon magnesium reduction processing level and develop recycling economy – China magnesium report. In: 62nd Annual World Magnesium Conference, Berlin, Germany, IMA, pp 13–25Google Scholar
  2. 2.
    Watson K et al (2000) The Magnola demonstration plant: A valuable investment in technology development and improvement. In HI Kaplan (ed) Magnesium Technology 2000, TMS, Nashville, TN, 27–30Google Scholar
  3. 3.
    Schoukens A, Curr T, and Abdellatif M (2007) Thermal production of magnesium. MINTEK, Pyrometallurgy Division, Randburg, South Africa, personal communicationGoogle Scholar
  4. 4.
    Krishnan A, Lu X, and Pal UB (2005) Solid oxide membrane (SOM) for cost effective and environmentally sound production of magnesium directly from magnesium oxide. In NR Neelaleggham HI Kaplan, and BR Powell (eds) Magnesium Technology 2005, TMS, Warrendale, PA, pp 7–15Google Scholar
  5. 5.
    Brooks G et al (2006) The carbothermic route to magnesium. Journal of Metals 57(5):51Google Scholar
  6. 6.
    Kramer DA (1998) Magnesium recycling in the United States in 1998. In Flow studies for recycling metal commodities in the United States, US Geological Survey, Reston, VA, USAGoogle Scholar
  7. 7.
    Shang S et al (2001) Innovative vacuum distillation for magnesium recycling. In J Hryn (ed) Magnesium Technology 2001, TMS, Warrendale, PA, USA, pp 55–60Google Scholar
  8. 8.
    Kimura K, Nishii K, Kawarada M (2003) Recycling magnesium alloy housings for notebook computers. Fujitsu Scientific Technical Journal 38(1): 102–111Google Scholar
  9. 9.
    Hanko G, Macher G (2003) Technologies for efficient Mg-scrap recycling. In HI Kaplan (ed) Magnesium Technology 2003, TMS, Warrendale, PA, USA, pp 29–32Google Scholar
  10. 10.
    Busk RS, Phillips CW (1945) Transactions AIME 161:266Google Scholar
  11. 11.
    Holdeman GE (1942) US Patent 2,304,093,8 Dec 1942Google Scholar
  12. 12.
    Cao P, Qian M, StJohn DH (2004) Grain coarsening of magnesium alloys by beryllium. Scripta Materialia 51:647–651CrossRefGoogle Scholar
  13. 13.
    Green W et al (1993) Method for producing high purity magnesium alloys. US Patent 5,248,477,28 Sept 28 1993Google Scholar
  14. 14.
    Dieter GE (1976) Mechanical Metallurgy. McGraw-Hill, New YorkGoogle Scholar
  15. 15.
    Caceres CH et al (2005) Section thickness, macrohardness and yield strength in high pressure die cast magnesium alloy AZ91. Materials Science and Engineering A 402:269–277CrossRefGoogle Scholar
  16. 16.
    Somekawa H, Mukai T (2005) Effect of grain refinement on fracture toughness in extruded pure magnesium. Scripta Materialia 53:1059–1064CrossRefGoogle Scholar
  17. 17.
    Emley EF (1966) Principles of magnesium technology. Pergamon Press, OxfordGoogle Scholar
  18. 18.
    Shaw C, Jones H (1997) The contribution of different alloying additions to hardening in rapidly solidified magnesium alloys. Materials Science and Engineering A 226–228:856–860CrossRefGoogle Scholar
  19. 19.
    Blake AH, Caceres CH (2005) Solid solution effects on the tensile behaviour of concentrated Mg-Zn alloys. In NR Neelaleggham (ed) Magnesium Technology 2005, TMS, Warrendale, PA, pp 403–407Google Scholar
  20. 20.
    Nie JF (2003) Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Materialia 48:1009–1015CrossRefGoogle Scholar
  21. 21.
    Caceres CH et al (2002) Effects of solidification and aging on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering A 325:344–355CrossRefGoogle Scholar
  22. 22.
    Weiss D, Robison ST (2005) Magnesium driving to permanent mold. Modern Casting 95(9):26–29Google Scholar
  23. 23.
    Loughanne T et al (2005) The effect of grain refinement on the castability of magnesium permanent mould castings. In NR Neelaleggham (ed) Magnesium Technology 2005, TMS, Warrendale, PA, pp 309–314Google Scholar
  24. 24.
    Tukeda T et al (2003) Magnesium alloy excellent fluidity and materials thereof. US Patent 6,582,533 B2, 24 June 2003Google Scholar
  25. 25.
    Nakamura K et al (2004) High strength magnesium based alloy and Mg based casting alloy and article made of the alloy. US Patent 6,755,922 B2, 29 June 2004Google Scholar
  26. 26.
    Sweder TA et al (2006) AM-lite and AM-HP2 new magnesium alloys offer new opportunities. In SAE 2006 Congress, Detroit, USA, SAE, paper 06M–459Google Scholar
  27. 27.
    Klement W, Wilens R.H, Duwez P (1960) Nature 187:869CrossRefGoogle Scholar
  28. 28.
    Inoue A (1995) Japan Institute of Materials (JIM) 36 (7):866–875Google Scholar
  29. 29.
    Kim G, Inoue A, Matsumoto T (1991) Increase of mechanical strength of Mg85Zn12Ce3 amorphous alloy by dispersion of ultrafine hcp particles. Materials Transactions JIM 32:875–878CrossRefGoogle Scholar
  30. 30.
    Amiya K, Inoue A (2000) Materials Transactions JIM 41:1460CrossRefGoogle Scholar
  31. 31.
    Magde SV, Greer AL (2004) Effect of Ag addition on the glass-forming ability and thermal stability of Mg-Cu-Y alloys. Materials Science and Engineering A 375–377:759–762Google Scholar
  32. 32.
    Perez P et al (2002) Mechanical behaviour of amorphous Mg-23.5Ni ribbons. In VIII Congreso National de Propiedades Mecanicas en Solidos, GandiaGoogle Scholar
  33. 33.
    Xu YK et al (2005) Mg-based bulk metallic glass composites with plasticity and gigapaskals strength. Acta Materialia 53:1857–1866CrossRefGoogle Scholar
  34. 34.
    Inoue A et al (1991) Materials Transactions JIM 32:609CrossRefGoogle Scholar
  35. 35.
    Cullity BD (1978) Elements of X-ray Diffraction. Addison-Wesley, New YorkGoogle Scholar
  36. 36.
    Kelly EW, Hosford WF (1968) Trans.AIME 242:5Google Scholar
  37. 37.
    Staroselsky A, Anand L (2003) A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B. International Journal of Plasticity 19(10):1843–1864CrossRefGoogle Scholar
  38. 38.
    Gehrmann R, Frommert MM, Gottstein G (2005) Texture effect on plastic deformation of magnesium. Materials Science and Engineering A 395:338–349CrossRefGoogle Scholar
  39. 39.
    Kaibyshev OA (2005) Superplasticity: Microstructural Refining and Superplastic Roll Forming. In ISTC, Science and Technology Series, vol 3. Futureplast, Arlington, USAGoogle Scholar
  40. 40.
    Kaibyshev OA, Salikhov RR (1981) Effect of superplastic deformation on the structure and properties of alloy MA21. Metal Science and Heat Treatment 23(3):188–192CrossRefGoogle Scholar
  41. 41.
    Watanabe H et al (2002) Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia 46:851–856CrossRefGoogle Scholar
  42. 42.
    Somekawa H et al (2003) Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Materialia 48:1249–1254CrossRefGoogle Scholar
  43. 43.
    Mabuchi M et al (1997) Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia 36:681–686CrossRefGoogle Scholar
  44. 44.
    Watanabe H et al (1999) Effect of temperature and grain size on the dominant diffusion process for superplastic flow in AZ61 magnesium alloy. Acta Materialia 47(14):3753–3758CrossRefGoogle Scholar
  45. 45.
    Caceres CH et al (1999) The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys. Scripta Materialia 40(5):631–637CrossRefGoogle Scholar
  46. 46.
    Ghosh AK (1977) Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metallurgica 25(12):1413–1424CrossRefGoogle Scholar
  47. 47.
    Lee SG et al (2005) Variability in the tensile ductility of high pressure die cast AM50 Mg alloy. Scripta Materialia 53:851–856CrossRefGoogle Scholar
  48. 48.
    Weiler JP et al (2005) Relationship between internal porosity and fracture strength of die cast magnesum alloy AM60B. Materials Science and Engineering A 395:315–322CrossRefGoogle Scholar
  49. 49.
    Ericksen SC (1988) Magnesium’s high damping capacity for automotive noise and vibration attenuation. In 45 World Magnesium Congress, Tokyo, 1998, IMA, pp 54–58Google Scholar
  50. 50.
    Jensen JW (1964) Magnesium damping capacity—causes and effects. In Magnesium Association Convention, 1964, pp 1–11Google Scholar
  51. 51.
    EMI shielding, Hydro Magnesium Brochure, 2005Google Scholar
  52. 52.
    Rudajevova A, Stanek M, Lukac P (2003) Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys. Materials Science and Engineering A 341:152–157CrossRefGoogle Scholar
  53. 53.
    Doehler HH (1951) Die castings. McGraw Hill, New YorkGoogle Scholar
  54. 54.
    Sin LS, Dube D (2004) Influence of process parameters on fluidity of investment cast AZ91D magnesium alloy. Materials Science and Engineering A 386:34–42CrossRefGoogle Scholar
  55. 55.
    Moore S (2002) Magnesium Molding—technique expands options. Modern Plastics, July 2002:33Google Scholar
  56. 56.
    Kono K (1999) Method and apparatus for manufacturing metallic parts by fine die casting. US Patent 5,983,976, 16 Nov 1999Google Scholar
  57. 57.
    Moore S (2002) Thixotropic molding broadens processor capabilities. Modern Plastics March 2002:24–30Google Scholar
  58. 58.
    Tausing G, Ricketts NJ, Peck SR (2001) Forging of magnesium using squeeze cast preform. In J Hryn (ed) Magnesium Technology 2001, TMS, Warrendale, PA, pp 235–242Google Scholar
  59. 59.
    Couling SL, Pashak JF, Sturkey L (1959) Transactions ASM 51:94–107Google Scholar
  60. 60.
    Barnett MR, Bave MD, Bettles CJ (2004) Deformation microstructures and textures of some cold rolled Mg alloys. Materials Science and Engineering A 386:205–211CrossRefGoogle Scholar
  61. 61.
    Lochte L, Westengen H, Rodseth J (2005) An efficient route to magnesium alloy sheet: Twin roll casting and rolling. In NR Neelaleggham (ed) Magnesium Technology 2005, TMS, Warrendale, PA, pp 247–252Google Scholar
  62. 62.
    Bohlen J et al (2005) Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scripta Materialia 53:259–264CrossRefGoogle Scholar
  63. 63.
    Celotto S (2000) TEM study of continuous precipitation in Mg-9Al-1Zn alloy. Acta Materialia 48(8):1775–1787CrossRefGoogle Scholar
  64. 64.
    Zhang MX, Kelly PM (2002) Crystallography of Mg17Al12 precipitates in AZ91D alloy. Scripta Materialia 48:647–652CrossRefGoogle Scholar
  65. 65.
    Ghali E, Kainer KU (2004) General and localized corrosion of magnesium alloys: A critical review. Journal of Materials Engineering and Performance 13:7–23CrossRefGoogle Scholar
  66. 66.
    Lunder O et al (1989) Corrosion Science 45:741CrossRefGoogle Scholar
  67. 67.
    Juzeliunas E et al (2005) Structure and initial corrosion resistance of sputter deposited nanocrystalline Mg-Al-Zr alloys. Materials Science and Engineering A 395:411–416Google Scholar
  68. 68.
    Song G, StJohn D (2002) The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. Journal of Light Metals 2:1–16CrossRefGoogle Scholar
  69. 69.
    Dube D et al (2001) Characterization and performance of laser melted AZ91D and AM60B. Material Science and Engineering A 299:38–45CrossRefGoogle Scholar
  70. 70.
    Song G, Atrens A, Dargusch M (1999) Influence of microstructure on the corrosion of die cast AZ91D. Corrosion Science 41:249–273CrossRefGoogle Scholar
  71. 71.
    Mathieu S et al (2002) Corrosion behaviour of high pressure die cast and semisolid cast AZ91D alloys. Corrosion Science 44:2737–2756CrossRefGoogle Scholar
  72. 72.
    Wang F, Li Y, Huo H 2004) Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science 46:1467–1477CrossRefGoogle Scholar
  73. 73.
    Yang K, Xu L, Zhang E (2005) Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Materialia 53:523–527CrossRefGoogle Scholar
  74. 74.
    Timoshenko AV, Magurova YV (1995) The effect of a cathodic component on AC microplasma oxidation of aluminum alloys. Protection of Metals 31(4):377–380Google Scholar
  75. 75.
    Stevens KT, John CG, Walsh FC (2003) Surface finishing of aluminum and magnesium alloys using plasma electrolytic oxidation. In HI Kaplan (ed) Magnesium Technology 2003, TMS, Warrendale, PA, p 89Google Scholar
  76. 76.
    Timoshenko AV et al (1994) The effect of silicates in sodium hydroxide solution on the structure of oxide coatings deposited on a D16T alloy by microarc oxidation. Protection of Metals 30(2):149–153Google Scholar
  77. 77.
    Shrestha S et al (2002) Improved corrosion performance of AZ91D magnesium alloy coated with the Keronite process. In HI Kaplan (ed) Magnesium Technology 2002, TMS, Warrendale, PAGoogle Scholar
  78. 78.
    MEL (2005) Surface treatments for magnesium alloys in aerospace and defence. Magnesium Elektron, Swinton, EnglandGoogle Scholar
  79. 79.
    Brown RE (2002) Developments in magnesium wrought products rolling, forging and sheet casting. In 59th Annual World Magnesium Conference, Montreal, 2002, pp 25–32Google Scholar
  80. 80.
    Nakatsugawa I, Tsukeda T, Kitamura K (2002) Latest developments in magnesium use for thixomolding in Asia. In 59th Annual World Magnesium Conference, Montreal, 2002, 11–14Google Scholar
  81. 81.
    Shukun M et al (2006) China magnesium industry development report for 2005. In 63rd World Magnesium Conference, Beijing, IMA, pp 3–23Google Scholar
  82. 82.
    Metals Handbook (1973) 8th ed. vol. 8. American Society for Metals, Metals Park, OhioGoogle Scholar
  83. 83.
    Westengen H, Bakke P, Albright, D (2005) Advances in Magnesium Alloy Development. Die Casting Engineer 49(6):26–32Google Scholar
  84. 84.
    Nayeb-Hashemi AA, Clark JB (1988) Phase diagrams of binary magnesium alloys. ASM International, Metals Park, OhioGoogle Scholar
  85. 85.
    Brooks CR (1982) Heat treatment, structure and properties of non-ferrous alloys. ASM International, Metals Park, OhioGoogle Scholar
  86. 86.
    Mathis K, Trojanova Z, Lukac P (2002) Hardening and softening in deformed magnesium alloys. Materials Science and Engineering A 324:141–144CrossRefGoogle Scholar
  87. 87.
    Pourbaix M (1974) Atlas of Electrochemical Equilibria. In Aqueous Solutions, National Association of Corrosion EngineersGoogle Scholar
  88. 88.
    Kato A et al (1994) Consolidation and mechanical properties of atomized Mg-based amorphous powder. Materials Science and Engineering A 179–180:112–117CrossRefGoogle Scholar
  89. 89.
    Kato A et al (1994) Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders. Materials Science and Engineering A 179–180:707–711CrossRefGoogle Scholar
  90. 90.
    Friedrich H, Schumann S (2002) Strategies for overcoming technological barriers to the increased use of magnesium in cars. In Transactions of Institute of Mining and Metallurgy (section c: mineral processing and extractive metallurgy), The Institute of Materials, Minerals and Mining, pp. C65–C71Google Scholar
  91. 91.
    CRC Handbook of Chemistry and Physics (1996) New YorkGoogle Scholar
  92. 92.
    Smithels Metals Reference Book, 8-th edition (2004) ElsevierGoogle Scholar
  93. 93.
    Shewmon P, Diffusion in Solids (1989) TMS WarrendaleGoogle Scholar
  94. 94.
    Horst HJ and Asby MF (1982) Deformation Mechanism Map, Pergamon PressGoogle Scholar
  95. 95.
    Cannon JF (1974) J. Phys. Chem. Ref. Data Vol. 3, pp 781–824Google Scholar
  96. 96.
    Magnesium and Magnesium Alloys (1999) edited by M. Avedesian and H. Baker, ASM International, Materials Park, OHGoogle Scholar
  97. 97.
    Metals Handbook (1990) Vol 2. ASM International, Materials Park, OHGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Frank Czerwinski
    • 1
  1. 1.Development EngineeringHusky Injection Molding Systems Ltd.Bolton, OntarioCanada

Personalised recommendations