Skip to main content

Inflammation

  • Chapter

Part of the book series: Molecular Pathology Library ((MPLB,volume 1))

Abstract

In the lung, as in other anatomic sites, inflammation can be regarded as a complex, generally salutary response of the body to injurious agents. This bodily response derives from a series of interconnected cellular and molecular events acting in concert with an equally complex array of neurogenic1,2 and vasogenic factors.35 Principal cellular actors playing a role in the inflammatory process include polymorphonuclear leukocytes, lymphocytes, plasma cells, eosinophils, mast cells, monocytes, and macrophages. Leading molecular compounds regulating cellular responses are chemical mediators such as vasoactive amines, prostaglandins, and leukotrienes, as well as members of the kinin and complement activation system (Table 43.1).6 This chapter discusses the major forms of the inflammatory response, namely, acute and chronic inflammation, and addresses granulomatous inflammation. In addition, it covers mechanisms of response selection, innate immunity (Toll receptors), and specific cellular constituents, in particular, pulmonary alveolar macrophages and dendritic cells and their roles in antigen presentation and human leukocyte antigen (HLA)-linked diseases.

Inflammatory mediators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tracey KJ. The inflammatory reflex. Nature 2002;420:853–859.

    Article  CAS  PubMed  Google Scholar 

  2. Richardson JD, Vasko MR. Cellular mechanisms of neurogenic inflammation. Pharmacol Exp Ther 2002;302:839–845.

    Article  CAS  Google Scholar 

  3. Majno G, Palade GE. Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 1961;11:571–596.

    Article  CAS  PubMed  Google Scholar 

  4. Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol 1961;11:607–626.

    Article  CAS  PubMed  Google Scholar 

  5. Majno G. Commentary. Chronic inflammation: links with angiogenesis and wound healing. Am J Pathol 1998;153:1035–1039.

    CAS  PubMed  Google Scholar 

  6. Kunkel SL, Strieter RM. Cytokines and chemokines in lung inflammation and injury. In Fishman AP, ed. Fishman’s Pulmonary Diseases and Disorders, 3rd ed, vol 1. New York: McGraw-Hill; 1998:315–324.

    Google Scholar 

  7. Muller WA. Leukocyte-endothelial cell interactions in the inflammatory response. Lab Invest 2002;82:521–534.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar V, Abbas AK, Fausto N, ed. Robbins and Cotran Pathologic Basis of Disease, 7th ed. Philadelphia: Elsevier, 2005:47–86.

    Google Scholar 

  9. Reynolds HY, Elias JA. Pulmonary defense mechanisms against infections. In Fishman AP, ed. Pulmonary Diseases and Disorders, 3rd ed, vol 1. New York: McGraw-Hill; 1998:265–274.

    Google Scholar 

  10. Berman JS, Center DM. Lymphocyte-and macrophage-mediated inflammation in the lung. In Fishman AP, ed. Pulmonary Diseases and Disorders, 3rd ed, vol 1. New York: McGraw-Hill; 1998:275–287.

    Google Scholar 

  11. Inlay M. A response to Chapter 6 of Darwin’s Black Box. Minlay@biomail.UCSD.edu, June 2002.

    Google Scholar 

  12. Goldsby RA, Kindt TJ, Osborne BA, et al. Immunology, 5th ed. New York: W.H. Freeman; 2003:69.

    Google Scholar 

  13. Collins German Concise Dictionary, 3rd ed. Glasgow, Scotland: Harper Collins, 2006:333.

    Google Scholar 

  14. Goldstein DR. Toll like receptors and other links between innate and acquired alloimmunity. Curr Opin Immunol 2004;16:538–544.

    Article  CAS  PubMed  Google Scholar 

  15. Luke AJ, O’Neill LA. Immunity’s early-warning system. Sci Am 2005;292:38–45.

    Google Scholar 

  16. Dunne A, O’Neill LA. The interleukin-1 receptor/Toll like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003;171:R–3.

    Google Scholar 

  17. Lazarus R, Ruby BA, Louge C, et al. Toll-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 2004;170:594–600.

    Article  PubMed  Google Scholar 

  18. Basu S, Fenton MJ. Toll-like receptors: function and roles in lung disease. Am J Physiol Lung Cell Mol Physiol 2004;286:L887–L892.

    Article  CAS  PubMed  Google Scholar 

  19. Pons J, Sauleda J, Regueriro V, et al. Expression of toll-like receptor 2 is up-regulated in monocytes from patients with chronic obstructive pulmonary disease. Respir Res 2006;7:64A.

    Article  CAS  Google Scholar 

  20. Velasco G, Campo M, Manrique OJ, et al. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am J Respir Cell Mol Biol 2005;32:218–224.

    Article  CAS  PubMed  Google Scholar 

  21. Chen W, Kuo Lee R, Shen H, et al. Toll-like receptor 4 (TLR 4) does not confer a resistance advantage on mice against low-dose aerosol infection with virulent type A Francisella tularensis. Microb Pathog 2004;37:185–191.

    Article  CAS  PubMed  Google Scholar 

  22. Knapp S, Wieland CW, Florquin S, et al. Differential roles of CD14 and Toll-like receptors 4 and 2 in murine Acinetobacter pneumoniae. Am J Respir Crit Care Med 2006;173:122–129.

    Article  CAS  PubMed  Google Scholar 

  23. Corrin B, Nicholson AG. Pathology of the Lungs, 2nd ed. Philadelphia: Churchill Livingstone; 2006:1–34.

    Google Scholar 

  24. Fujii T, Hayashi S, Hogg JC, et al. Interaction of alveolar macrophages and airway epithelial cells following exposure to particulate matter produces mediators that stimulate the bone marrow. Am J Respir Cell Mol Biol 2002;27:34–41.

    CAS  PubMed  Google Scholar 

  25. Abbas AK, Lichtman AH, Pober JS. Cellular and Molecular Immunology, 4th ed. Philadelphia: W.B. Saunders; 2000:22–24.

    Google Scholar 

  26. Steinman R, Cohn Z. Identification of a novel cell type in peripheral lymphoid organs of mice. J Exp Med 1973;137:1142–1162.

    Article  CAS  PubMed  Google Scholar 

  27. Satthaporn S, Eremin O. Dendritic cells (1): Biological functions. J R Coll Surg Edinb 2001;46:9–20.

    CAS  PubMed  Google Scholar 

  28. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  29. Holt PG. Antigen presentation in the lung. Am J Respir Crit Care Med 2000;162:S151–S156.

    CAS  PubMed  Google Scholar 

  30. Randolph GJ, Beaulieu S, Lebecque S, et al. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 1998;282:480–483.

    Article  CAS  PubMed  Google Scholar 

  31. Godthelp T, Fokkens WJ, Kleinjan A, et al. Antigen presenting cells in the nasal mucosa of patients with allergic rhinitis during allergen provocation. Clin Exp Allergy 1996;26:677–688.

    Article  CAS  PubMed  Google Scholar 

  32. Fokkens WJ, Vroom M, Rijntjes E, et al. Fluctuation of the number of CD-1 (T6)-positive dendritic cells, presumably Langerhans cells, in the nasal mucosa of patients with an isolated grass-pollen allergy before, during, and after the grass-pollen season. J Allergy Clin Immunol 1989;84:39–43.

    Article  CAS  PubMed  Google Scholar 

  33. Tunon-de-Lara JM, Redington P, Bradding MK, et al. Dendritic cells in normal and asthmatic airways: expression of the á subunit of the high affinity immunoglobulin E receptor (Fcε RI-α). Clin Exp Allergy 1996;26:648–655

    Article  CAS  PubMed  Google Scholar 

  34. Majno G, Joris I. Cells, Tissues and Disease. Principles of General Pathology, 2nd ed. New York: Oxford University Press; 2004:442–476.

    Google Scholar 

  35. Sharma OP. Clinical diagnosis and types of granulomas. In: Cagle PT, ed. Diagnostic Pulmonary Pathology. New York: Marcel-Dekker; 2000:331–347.

    Google Scholar 

  36. Mohan H, ed. Textbook of Pathology, 5th ed. New Delhi: Jaypee Brothers, 2005:153–154.

    Google Scholar 

  37. Hasleton PS, ed. Spencer’s Pathology of the Lung, 5th Ed. New York: McGraw-Hill; 1996:1–44.

    Google Scholar 

  38. Laga AC, Allen T, Cagle PT. Usual interstitial pneumonia. In: Cagle PT, ed. Color Atlas and Text of Pulmonary Pathology. Philadelphia: Lippincott Williams & Wilkins; 2005:427–429.

    Google Scholar 

  39. Laga A, Allen T, Cagle PT. Non specific interstitial pneumonia. In: Cagle PT, ed. Color Atlas and Text of Pulmonary Pathology. Philadelphia: Lippincott Williams & Wilkins, 2005:431–432.

    Google Scholar 

  40. Laga A, Allen T, Cagle PT. Cryptogenic organizing pneumonia (idiopathic bronchiolitis obliterans organizing pneumonia). In Cagle PT, ed. Color Atlas and Text of Pulmonary Pathology. Philadelphia: Lippincott Williams & Wilkins; 2005:433–434.

    Google Scholar 

  41. Noble PN. Idiopathic pulmonary fibrosis: new insight into classification and pathogenesis usher in a new era in therapeutic approaches. Am J Respir Cell Mol Biol 2003;29:S27–S31.

    CAS  PubMed  Google Scholar 

  42. Merrill WW, Reynolds HY. Bronchial lavage in inflammatory lung disease. Clin Chest Med 1983;4:71–84.

    CAS  PubMed  Google Scholar 

  43. Wardlaw A. Immunologic basis of lung disease. In Wardlaw AJ, Hamid Q, eds. Textbook of Respiratory Cell and Molecular Biology. London: Martin Dunitz LTD; 2002:47–71.

    Google Scholar 

  44. Schubert MS. A superantigen hypothesis for the pathogenesis of chronic hypertrophic rhinosinusitis, allergic fungal sinusitis and related disorders. Ann Allergy Asthma Immunol 2001;87:181–188.

    Article  CAS  PubMed  Google Scholar 

  45. Kappler, J, Kotzin, B, Herron L, et al. Vβ-specific stimulation of human T cells by staphylococcal toxins. Science 1989:244;811–813.

    Article  CAS  PubMed  Google Scholar 

  46. Kotb M, Norrby-Teglund A, McGeer A, et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med 2002;8:1398–1404.

    Article  CAS  PubMed  Google Scholar 

  47. Krakauer T. Immune response to staphylococcal superantigens. Immunol Res 1999;20:163–173.

    Article  CAS  PubMed  Google Scholar 

  48. Paliard X, West SG, Lafferty JA, et al. Evidence for the effects of a super antigen in rheumatoid arthritis. Science 1991;253:325–329.

    Article  CAS  PubMed  Google Scholar 

  49. Hauk PJ, Wenzel SE, Trumble AE, et al. Increased T-cell receptor Vβ8+T cells in bronchoalveolar lavage fluid of subjects with poorly controlled asthma: a potential role for microbial superantigens. J Allergy Clin Immunol 1999;103:37–45.

    Article  Google Scholar 

  50. Rammes A, Roth J, Goebeler M, et al. Myeloid-related protein (MRP) 8 and MRP14 calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem 1997;272:9496–9502.

    Article  CAS  PubMed  Google Scholar 

  51. Bühling F, Ittenson A, Kaiser D, et al. MRP8 / MRP14, CD11b and HLA-DR expression of alveolar macrophages in pneumonia. Immunol Lett 2000;71:185–190.

    Article  PubMed  Google Scholar 

  52. Nishimura M, Mitsunaga S, Ishikawa Y, et al. Possible mechanisms underlying development of transfusion related acute lung injury: roles of anti-major histocompatibility complex class II DR antibodies. Transfusion Med 2003;13:141–147.

    Article  CAS  Google Scholar 

  53. Schulman LL, Weinberg AD, McGregor CC, et al. Influence of donor and recipient HLA locus mismatching on development of obliterative bronchiolitis after lung transplantation. Am J Respir Crit Care Med 2001;163:437–442.

    CAS  PubMed  Google Scholar 

  54. Chalermskulrat W, Neuringer IP, Schmitz JL, et al. Human leukocyte antigen mismatches predispose to the severity of bronchiolitis obliterans syndrome after lung transplantation. Chest 2003;123:1825–1831.

    Article  PubMed  Google Scholar 

  55. Hoffman JA, Weinberg RI, Azen CG, et al. Human leukocyte antigen-DR expression on peripheral blood monocytes and the risk of pneumonia in pediatric lung transplant recipients. Transplant Infect Dis 2004;6:147–155.

    Article  CAS  Google Scholar 

  56. Muehlstedt SO, Lyte M, Rodriguez JL. Increased IL-10 production and HLA-DR suppression in the lungs of injured patients precede the development of nosocomial pneumonia. Shock 2002;17:443–450.

    Article  PubMed  Google Scholar 

  57. Ye Q, Finn PW, Sweeney R, et al. MCH class II-associated invariant chain isoforms regulate pulmonary immune responses. J Immunol 2003;170:1473–1480.

    CAS  PubMed  Google Scholar 

  58. Tsybalova LM, Popova TL, Karpukhin GI. HLA system antigens in persons with differing susceptibilities to the causative agents of acute respiratory diseases. Zh Mikrobiol Epidemiol Immunobiol 1989;10:64–68.

    PubMed  Google Scholar 

  59. Selman LM, Chapela R, Salas J, et al. Hypersensitivity pneumonitis: clinical approach and an integral concept about its pathogenesis. A Mexican point of view. In Selman-Lama M, Barrios R, eds. Interstitial Pulmonary Diseases: Selected Topics. Boston: CRC Press; 1991:171–195.

    Google Scholar 

  60. Wilson BD, Sternick JL, Yoshizawa Y, et al. Experimental murine hypersensitivity pneumonitis: multigenic control and influence by genes within the I-B subregion of the H-2 complex. J Immunol 1982;129:2160–2163.

    CAS  PubMed  Google Scholar 

  61. Rittner G, Sennenkamp J, Mollenhauer E, et al. Pigeons breeder’s lung association with HLA-DR3. Tissue Antigens 1983;21:374–379.

    Article  CAS  PubMed  Google Scholar 

  62. Ando M, Hirayama K, Soda K, et al. HLA-DQw3 in Japanese summer-type hypersensitivity pneumonitis induced by Trichosporon cutaneum. Am Rev Respir Dis 1989;140:948–950.

    CAS  PubMed  Google Scholar 

  63. Park MH, Kim YW, Yoon HI, et al. Association of HLA class I antigens with diffuse panbronchiolitis. 1999;159:526–529.

    CAS  Google Scholar 

  64. Keicho N, Tokunaga K, Nakata K, et al. Contribution of HLA genes to genetic predisposition in diffuse panbronchiolitis. Am J Respir Crit Care Med 1998;158:846–850.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Fraire, A.E. (2008). Inflammation. In: Zander, D.S., Popper, H.H., Jagirdar, J., Haque, A.K., Cagle, P.T., Barrios, R. (eds) Molecular Pathology of Lung Diseases. Molecular Pathology Library, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72430-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72430-0_43

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-72429-4

  • Online ISBN: 978-0-387-72430-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics