Skip to main content

Ever since dissolution was known to have a significant effect on bioavailability and clinical performance, dissolution analysis of pharmaceutical solids has become one of the most important tests in drug product development and manufacturing, as well as in regulatory assessment of drug product quality. Not only can dissolution testing provide information regarding the rate and extent of drug absorption in the body, it can also assess the effects of drug substance biopharmaceutical properties and formulation principles on the release properties of a drug product. Nevertheless, despite the wide use of dissolution testing by the pharmaceutical industry and regulatory agencies, the fundamentals and utilities of dissolution testing are still not fully understood. The objective of this chapter is to provide a concise review of dissolution methods that are used for quality control (QC) and bioavailability assessment, highlight issues regarding their utilities and limitations, and review challenges of improving some of these current dissolution methods, particularly those used for assessing in vivo drug product performance. In this chapter, we first provide some background information on dissolution, including the significance of dissolution in drug absorption, theories of dissolution, and factors affecting dissolution testing. Second, we examine the current roles of dissolution testing. Third, we evaluate the utilities and limitations of dissolution as a QC tool under the current industry setting. Finally, we conclude this chapter by discussing the biopharmaceutics classification system (BCS) and biorelevant dissolution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amidon, G.L., Lennern äs, H., Shah, V.P., and Crison, J.R. (1995). A theoretical basis for a biopharmaceutics drug classification: the correlation of in vivo drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413-420.

    Article  PubMed  CAS  Google Scholar 

  • Armenante, P., and Muzzio, F. (2005). Inherent method variability in dissolution testing: the effect of hydrodynamics in the USP II Apparatus. A Technical Report Submitted to the Food and Drug Administration.

    Google Scholar 

  • Ashby, L.J., Beezer, A.E., and Buckton, G. (1989). In vitro dissolution testing of oral controlled release preparations in the presence of artificial foodstuffs. I. Exploration of alternative methodology: microcalorimetry. Int. J. Pharm. 51:245-251.

    CAS  Google Scholar 

  • Bandelin, F.J. (1990). Compressed Tablets by Wet Granulation. In: Lieberman, H.A., Lachman, L., and Schwartz, J.B. (eds.), Pharmaceutical Dosage Forms: Tablets, Volume 1. Marcel Dekker, Inc., New York, pp. 199-302.

    Google Scholar 

  • Brown, C.K., Chokshi, H.P., Nickerson, B., Reed, R.A., Rohrs, B.R., and Shah, P.A. (2004). Acceptable analytical practices for dissolution testing of poorly soluble compounds. Pharm. Tech. 56-65.

    Google Scholar 

  • Brunner, E. (1904). Reaktionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 43:56-102.

    Google Scholar 

  • Brunner, L., and Tolloczko, S. (1900). Ãœber die Aufl ösungsgeschwindingkeit fester K örper. Z. Physiol. Chem. 35:283-290.

    Google Scholar 

  • Borst, I., Ugwu, S., and Beckett, A.H. (1997). New and extended application for USP drug release Apparatus 3. Dissolut. Technol. 1-6.

    Google Scholar 

  • Carey, M.C., and Small, D.M. (1972). Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch. Intern. Med. 130:506-527.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, P. (1968). The incidence of achlorhydria in healthy subjects and patients with gastrointestinal diseases. Scan. J. Gastroenterol. 3:497-508.

    Article  CAS  Google Scholar 

  • Corrigan, O.I. (1985). Mechanisms of dissolution of fast release solid dispersions. Drug Dev. Ind. Pharm. 11:697-724.

    Article  CAS  Google Scholar 

  • Danckwerts, P.V. (1951). Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem. 43:1460-1467.

    Article  CAS  Google Scholar 

  • Davenport, H.W. (1982). Physiology of the Digestive Tract, 5th ed. Year Book Medical Publishers, Inc., Chicago.

    Google Scholar 

  • Dressman, J.B. (2000). Dissolution testing of immediate-release products and its applica-tion to forecasting in vivo performance. In: Dressman, J.B., and Lennern äs, H. (eds.), Oral Drug Absorption: Prediction and Assessment, Volume 106. Marcel Dekker, Inc., New York, pp. 155-181.

    Google Scholar 

  • Dressman, J.B., Berardi, R.R., Dermentzoglou, L.C., Russell, T.L., Schmaltz, S.P., Barnett, J.L., and Jarvenpaa, K.M. (1990). Upper gastrointestinal (GI) pH in young healthy men and women. Pharm. Res. 7:756-761.

    Article  PubMed  CAS  Google Scholar 

  • Dressman, J.B., Amidon, G.L., Reppas, C., and Shah, V.P. (1998). Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15:11-22.

    Article  PubMed  CAS  Google Scholar 

  • Efentakis, M., and Dressman, J.B. (1998). Gastric juice as a dissolution medium: surface tension and pH. Eur. J. Drug Metab. Pharmacokinet. 23:97-102.

    PubMed  CAS  Google Scholar 

  • FDA (1997a). Center for Drug Evaluation and Research, Guidance for industry. Dissolution testing of immediate release solid oral dosage forms.

    Google Scholar 

  • FDA (1997b). Center for Drug Evaluation and Research, Guidance for industry. Extended release oral dosage forms: development, evaluation, and application of in vitro/in vivo correlations.

    Google Scholar 

  • FDA (2000). Center for Drug Evaluation and Research, Guidance for industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system.

    Google Scholar 

  • Finholt, P. (1974). Influence of formulation on dissolution rate. In Leeson, L.J., and Carstensen, J.T. (eds.), Dissolution Technology, American Pharmaceutical Association, Washington, DC, pp. 106-146.

    Google Scholar 

  • Finholt, P., and Solvang, S. (1968). Dissolution kinetics of drugs in human gastric juice -the role of surface tension. J. Pharm. Sci. 57:1322-1326.

    Article  PubMed  CAS  Google Scholar 

  • Finholt, P., Gundersen, H., Smit, A., and Petersen, H. (1978). Surfactant tension of human gastric juice. Medd. Norsk. Farm. Selsk. 41:1-14.

    Google Scholar 

  • Fordtran, J.S., and Locklear, T.W. (1966). Ionic constituents and osmolality of gastric and small-intestinal fluids after eating. Am. J. Dig. Dis. 11:503-521.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, E.J., Leach, R.H., and Poston, J.W. (1972). Bioavailability of digoxin. Lancet 2:541.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, R., Lal Kaul, C., and Panchagnula, R. (1999). Extrusion and spheronization in the development of oral controlled-release dosage forms. Pharm. Sci. Technol. Today 4:160-170.

    Article  PubMed  Google Scholar 

  • Gordon, M.S., and Rudraraju, V.S. (1993). Effect of the mode super disintegrant incorpo-ration on dissolution in wet granulated tablets. J. Pharm. Sci. 82:220-226.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, D.E. (1994). Small intestinal pH and buffer capacity: implication for dis-solution of ionizable compounds. Doctoral Dissertation. The University of Michigan, Ann Arbor.

    Google Scholar 

  • Hanson, W.A. (1982). Handbook of Dissolution Testing, Volume 49. Pharmaceutical Tech-nology Publications, Oregon.

    Google Scholar 

  • Higuchi, T. (1961). Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50:874-875.

    Article  PubMed  CAS  Google Scholar 

  • Howard, S.A., Mauger, J.W., Khwangsopha, A., and Pasquerelli, D.A. (1979). Tablet position and basket type effects in spin-filter dissolution device. J. Pharm. Sci. 68: 1542-1545.

    Article  PubMed  CAS  Google Scholar 

  • Klein, S. (2005). Biorelevant dissolution test methods for modified release dosage forms. Doctoral Thesis. Johann Wolfgang Goethe University Frankfurt, Shaker-Verlag.

    Google Scholar 

  • Levy, G., Leonards, J.R., and Procknal, J.A. (1965). Development of in vitro dissolution tests which correlate quantitatively with dissolution rate-limited drug absorption in man. J. Pharm. Sci. 54:1719-1722.

    Article  CAS  Google Scholar 

  • Loftsson, T., Hreinsd óttir, D., and M ásson, M. (2005). Evaluation of cyclodextrin solubi-lization of drugs. Inter. J. Pharm. 302:18-28.

    Article  CAS  Google Scholar 

  • Macheras, P., Koupparis, M., and Apostelelli, E. (1987). Dissolution of four controlledrelease theophylline formulations in milk. Int. J. Pharm. 36:73-79.

    Article  CAS  Google Scholar 

  • Mauger, J.W., Howard, S.A., and Khwangsopha, A. (1979). Hydrodynamic characterization of a spin-filter dissolution device. J. Pharm. Sci. 68: 1084-1087.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, L.G., Bradley, G., Sexton, J.C., Corrigan, O.I., and Healy, A.M. (2004). Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities. AAPS PharmSciTech. 5:1-10.

    Article  Google Scholar 

  • Meyer, J.H., Elashoff, J., Porter-Fink, V., Dressman, J., and Amidon, G.L. (1988). Human postprandial gastric emptying of 1-3 millimeter spheres. Gastroenterology 94: 1315-1325.

    PubMed  CAS  Google Scholar 

  • Miller, D.A., McConville, J.T., Yang, W., Williams III, R.O., and McGinity J.W. (2006). Hot-melt extrusion for enhanced delivery of drug particles. J. Pharm. Sci. 96:361-376.

    Article  CAS  Google Scholar 

  • Mithani, S.D., Bakatselou, V., TenHoor, C.N., and Dressman, J.B. (1996). Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm. Res. 13:163-167.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J.G., Christian, P.E., and Coleman, R.E. (1981). Gastric emptying of varying meal weight and composition in man. Evaluation by dual liquid- and solid-phase isotopic method. Dig. Dis. Sci. 26:16-22.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, E. (1957). Solution rate of theophylline salts and effects from oral administration. J. Am. Pharm. Assoc. 46:607-614.

    CAS  Google Scholar 

  • Nernst, W.(1904). Theorie der reaktionsgeschwindigkeit in heterogenen systemen. Z. Physiol. Chem. 47:52-55.

    CAS  Google Scholar 

  • Ovesen, L., Bendtsen, F., Tage-Jensen, U., Pedersen, N.T., Gram, B.R., and Rune, S.L. (1986). Intraluminal pH in the stomach, duodenum, and proximal jejunum in nor-mal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology 90: 958-962.

    PubMed  CAS  Google Scholar 

  • Peck, G.E., Baley, G.J., McCurdy, V.E., and Banker, G.S. (1989). Tablet Formulation and Design. In: Lieberman, H.A., Lachman, L., and Schwartz, J.B. (eds.), Pharmaceutical Dosage Forms: Tablets, Volume 1. Marcel Dekker, Inc., New York, pp. 73-130.

    Google Scholar 

  • Pinnamaneni, S., Das, N.G., and Das, S.K. (2002). Formulation approaches for orally administered poorly soluble drugs. Pharmazie 57:291-300.

    PubMed  CAS  Google Scholar 

  • Rekhi, G.S., Eddington, N.D., Fossler, M.J., Schwartz, P., Lesko, L.J., and Augsburger, L.L. (1997). Evaluation of in vitro release rate and in vivo absorption characteristics of four metoprolol tartrate immediate-release tablet formulations. Pharm. Dev. Technol. 2:11-24.

    Article  PubMed  CAS  Google Scholar 

  • Russell, T.L., Berardi, R.R., Barnett, J.L., Dermentzoglou, L.C., Jarvenpaa, K.M., Schmaltz, S.P., and Dressman, J.B. (1993). Upper gastrointestinal pH in seventy-nine healthy, elderly North American men and women. Pharm. Res. 10:187-196.

    Article  PubMed  CAS  Google Scholar 

  • Schott, H., Kwan, L.C., and Feldman, S. (1982). The role of surfactants in the release of very slightly soluble drugs from tablets. J. Pharm. Sci. 71:1038-1045.

    Article  PubMed  CAS  Google Scholar 

  • Shah, V.P., Konecny, J.J., Everett, R.L., McCullough, B., Noorizadeh, A.C., and Skelly, J.P. (1989). In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactants. Pharm. Res. 6:12-18.

    Google Scholar 

  • Shangraw, R. F. (1990). Compressed Tablets by Direct Compression. In: Lieberman, H.A., Lachman, L., and Schwartz, J.B. (eds.), Pharmaceutical Dosage Forms: Tablets, Volume 1, Marcel Dekker, Inc., New York, pp. 195-246.

    Google Scholar 

  • Sievert, B., and Siewert, M. (1998). Dissolution tests for ER products. Dissolut. Technol. 5:1-7.

    Google Scholar 

  • Stavchansky, R., and McGinity, J. (1989). Bioavailability and Tablet Technology. In: Lieberman, H.A., Lachman, L., and Schwartz, J.B. (eds.), Pharmaceutical Dosage Forms: Tablets, Volume 2, Marcel Dekker, Inc., New York, pp. 349-553.

    Google Scholar 

  • Swanepoel, E., Liebenberg, W., and de Villiers, M.M. (2003). Quality evaluation of generic drugs by dissolution test: changing the USP dissolution medium to distinguish between active and non-active mebendazole polymorphs. Eur. J. Pharm. Biopharm. 55:345-349.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, J.G. (1970). Rate of dissolution in vivo and in vitro, part II. Drug Intell. Clin. Pharm. 4:32.

    CAS  Google Scholar 

  • Yu, L.X. (1999). An integrated absorption model for determining causes of poor oral drug absorption, Pharm. Res. 16:1883-1887.

    Article  PubMed  CAS  Google Scholar 

  • Yu, L.X., and Amidon, G.L. (1999). Analytical solutions to mass transfer. In Amidon, G.L., Lee, P.I., and Topp, E.M. (eds.), Transport Processes in Pharmaceutical Systems, Volume 102, Marcel Dekker, Inc., New York, pp. 23-54.

    Google Scholar 

  • Yu, L.X., Wang, J.T., and Hussain, A.S. (2002). Evaluation of USP Apparatus 3 for Dissolution Testing of Immediate-Release Products. AAPS PharmSci. 4:1-5.

    Article  Google Scholar 

  • Zhang, H., and Yu, L.X. (2004). Dissolution testing for solid oral drug products: theoretical consideration. Am. Pharm. Rev. 26-31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, S.L., Raw, A.S., Yu, L. (2008). Dissolution Testing. In: Krishna, R., Yu, L. (eds) Biopharmaceutics Applications in Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72379-2_3

Download citation

Publish with us

Policies and ethics