Skip to main content

The Initial Steps in Agrobacterium Tumefaciens Pathogenesis: Chemical Biology of Host Recognition

  • Chapter

The biology of host recognition in Agrobacterium tumefaciens has set the tone for host interactions and xenognosis for several decades, and the twists and turns of the discoveries provide many valuable lessons and insights. From transposon mutagenesis enabling discovery of the initial chemical exchanges to two-component signal transduction and receptor identification, this organism continues to enrich our understanding of chemical ecology and pathogenic strategies. The complexity of the host commitment and the intricate nature of the evolved machinery remains awe inspiring. This system is now poised with the necessary chemical and biological resources, for both host and parasite, to reveal the detailed chemical biology that occurs within the host tissues. Here we review our current understanding of the signal exchanges, and highlight the many questions that remain to be addressed. We use this perspective to set the stage for the rich chemical biology this organism continues to offer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between di-verse phototransducing proteins. Trends Biochem Sci 22: 458-459

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Ponting CP (1999) The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokary-otic signalling proteins. FEMS Microbiol Lett 176: 111-116

    Article  PubMed  CAS  Google Scholar 

  • Braun AC (1952) Conditioning of the host cell as a factor in the transformation process in crown gall. Growth 16: 65-74

    PubMed  CAS  Google Scholar 

  • Brencic A, Angert ER, Winans SC (2005) Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumor free. Mol Microbiol 57: 1522-1531

    Article  PubMed  CAS  Google Scholar 

  • Brencic A, Xia Q, Winans SC (2004) VirA of Agrobacterium tumefaciens is an in-tradimer transphosphorylase and can actively block vir gene expression in the absence of phenolic signals. Mol Microbiol 52: 1349-1362

    Article  PubMed  CAS  Google Scholar 

  • Campbell AM, Tok JB, Zhang J, Wang Y, Stein M, Lynn DG, Binns AN (2000) Xenognosin sensing in virulence: is there a phenol receptor in Agrobacterium tumefaciens? Chemistry & Biology 7: 65-76

    Article  CAS  Google Scholar 

  • Cangelosi GA, Ankenbauer RG, Nester EW (1990) Sugars induce the Agrobacte-rium virulence genes through a periplasmic binding protein and a transmem-brane signal protein. Proc Natl Acad Sci USA 87: 6708-6712

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, Winans SC (1992) Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bac-teriol 174: 7033-7039

    CAS  Google Scholar 

  • Chang CH, Winans SC (1996) Resection and mutagenesis of the acid pH-inducible P2 promoter of the Agrobacterium tumefaciens virG gene. J Bacte-riol 178: 4717-4720

    CAS  Google Scholar 

  • Chang CH, Zhu J, Winans SC (1996) Pleiotropic phenotypes caused by genetic ablation of the receiver module of the Agrobacterium tumefaciens VirA pro-tein. J Bacteriol 178: 4710-4716

    PubMed  CAS  Google Scholar 

  • Charles TC, Jin S, Nester EW (1992) Two-component sensory transduction sys-tems in Phytobacteria. Ann Rev Phyto 30: 463-484

    Article  CAS  Google Scholar 

  • De Greve H, Dhaese P, Seurinck J, Lemmers M, Van Montagu M, Schell J (1982) Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1: 499-511

    PubMed  Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvath K (2001) The biosynthesis of monolignols: a metabolic grid or independent pathways to guaiacyl and syringal units. Phyto-chemistry 57: 1069

    CAS  Google Scholar 

  • Duban ME, Lee KH, Lynn DG (1993) Strategies in pathogenesis: mechanistic specificity in the detection of generic signals. Mol Microbiol 7: 637-645

    Article  PubMed  CAS  Google Scholar 

  • Dye F, Delmotte FM (1997) Purification of a protein from Agrobacterium tumefa-ciens strain A348 that binds phenolic compounds. Biochem J 321: 319-324

    PubMed  CAS  Google Scholar 

  • Engstrom P, Zambryski P, Van Montagu M, Stachel SE (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197: 635-645

    Article  PubMed  CAS  Google Scholar 

  • Escudero J, Hohn B (1997) Transfer and integration of T-DNA without cell injury in the host plant. Plant Cell 9: 2135-2142

    Article  PubMed  CAS  Google Scholar 

  • Falke JJ, Hazelbauer GL (2001) Transmembrane signaling in bacterial chemore-ceptors. Trends Biochem Sci 26: 257-265

    Article  PubMed  CAS  Google Scholar 

  • Gao R, Lynn DG (2005) Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol 187: 2182-2189

    Article  PubMed  CAS  Google Scholar 

  • Gao R, Lynn DG (2007) Integration of rotation and piston motions in coiled-coil signal transduction. J Bacteriol 189: 6048-6056

    Article  PubMed  CAS  Google Scholar 

  • Gao R, Mukhopadhyay A, Fang F, Lynn DG (2006) Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens. J Bacteriol 188: 5204-5211

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK (1998) Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci USA 95: 15177-15182

    Article  PubMed  CAS  Google Scholar 

  • Gubba S, Xie Y, Das A (2005) Regulation of Agrobacterium tumefaciens viru-lence gene expression: isolation of a mutation that restores virGD52E func-tion. Mol Plant Microbe Interact 8: 788-791

    Google Scholar 

  • Ho Y-S, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiqui-tous signaling motif and a new class of cyclic GMP receptor. EMBO J 19: 5288-5299

    Article  PubMed  CAS  Google Scholar 

  • Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M (2006) The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126: 929-940

    Article  PubMed  CAS  Google Scholar 

  • Jin SG, Roitsch T, Christie PJ, Nester EW (1990) The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcrip-tional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172: 531-537

    PubMed  CAS  Google Scholar 

  • Joubert P, Beaupere D, Lelievre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction - a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162: 733-743

    Article  CAS  Google Scholar 

  • Kenney LJ, Bauer MD, Silhavy TJ (1995) Phosphorylation-dependent conforma-tional changes in OmpR, an osmoregulatory DNA-binding protein of Es-cherichia coli. Proc Natl Acad Sci USA 92: 8866-8870

    Article  PubMed  CAS  Google Scholar 

  • Klee HJ, White FF, Iyer VN, Gordon MP, Nester EW (1983) Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J Bacte-riol 153: 878-883

    CAS  Google Scholar 

  • Kwon O, Georgellis D, Lin ECC (2003) Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli. J Biol Chem 278: 13192-13195

    Article  PubMed  CAS  Google Scholar 

  • Lee K (1997) A structure-based activation model of phenol-receptor protein inter-actions. Bull Korean Chem Soc 18: 18-23

    CAS  Google Scholar 

  • Lee K, Dudley MW, Hess KM, Lynn DG, Joerger RD, Binns AN (1992) Mecha-nism of activation of Agrobacterium virulence genes: Identification of phenol-binding proteins. Proc Natl Acad Sci USA 89: 8666-8670

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-W, Jin S, Sim W-S, Nester EW (1995) Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 92: 12245-12249

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-W, Jin S, Sim WS, Nester EW (1996) The sensing of plant signal mole-cules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 179: 83-88

    Article  PubMed  CAS  Google Scholar 

  • Li L, Jia Y, Hou Q, Charles TC, Nester EW, Pan SQ (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci USA 99: 12369-12374

    Article  PubMed  CAS  Google Scholar 

  • Lohrke SM, Nechaev S, Yang H, Severinov K, Jin SJ (1999) Transcriptional acti-vation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens RpoA gene, encoding the alpha subunit of RNA polymerase. J Bacteriol 181: 4533-4539

    PubMed  CAS  Google Scholar 

  • Lohrke SM, Yang H, Jin S (2001) Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J Bacteriol 183: 3704-3711

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H (1993) Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev 7: 149-160

    Article  PubMed  CAS  Google Scholar 

  • Mantis NJ, Winans SC (1992) The Agrobacterium tumefaciens vir gene transcrip-tional activator virG is transcriptionally induced by acid pH and other stress stimuli. J Bacteriol 174: 1189-1196

    PubMed  CAS  Google Scholar 

  • Marina A, Waldburger CD, Hendrickson WA (2005) Structure of the entire cyto-plasmic portion of a sensor histidine-kinase protein. EMBO J 24: 4247-4259

    Article  PubMed  CAS  Google Scholar 

  • Matsuda F, Morino K, Miyashita M, Miyagawa H (2003) Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy. Plant Cell Physiol 44: 510-517

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Regensburg-Tuink AJG, Schilperoort RA, Hooykaas PJJ (1989a) Specify of signal molecules in the activation of Agrobacterium virulence gene-expression. Molecular Microbiology 3: 969-977

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Regensburg-Tuink TJ, Bourret RB, Sedee NJ, Schilperoort RA, Hooykaas PJ (1989b) Membrane topology and functional analysis of the sen-sory protein VirA of Agrobacterium tumefaciens. EMBO J 8: 1919-1925

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Gao R, Lynn DG (2004) Integrating input from multiple sig-nals: the VirA/VirG two-component system of Agrobacterium tumefaciens. Chembiochem 5: 1535-1542

    Article  PubMed  CAS  Google Scholar 

  • Ottemann KM, Xiao W, Shin YK, Koshland DE, Jr. (1999) A piston model for transmembrane signaling of the aspartate receptor. Science 285: 1751-1754

    Article  PubMed  CAS  Google Scholar 

  • Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG (2004) Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42: 439-464

    Article  PubMed  CAS  Google Scholar 

  • Pan SQ, Charles T, Jin S, Wu ZL, Nester EW (1993) Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduc-tion. Proc Natl Acad Sci USA 90: 9939-9943

    Article  PubMed  CAS  Google Scholar 

  • Peng WT, Lee YW, Nester EW (1998) The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J Bacteriol 180: 5632-5638

    PubMed  CAS  Google Scholar 

  • Perego M, Hoch JA (1996) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12: 97-101

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Aravind L (1997) PAS: a multifunctional domain family comes to light. Curr Biol 7: R674-677

    Article  PubMed  CAS  Google Scholar 

  • Ricagno S, Campanacci V, Blangy S, Spinelli S, Tremblay D, Moineau S, Tegoni M, Cambillau C (2006) Crystal structure of the receptor-binding protein head domain from Lactococcus lactis phage bIL170. J Virol 80: 9331-9335

    Article  PubMed  CAS  Google Scholar 

  • Robinson VL, Buckler DR, Stock AM (2000) A tale of two components: a novel kinase and a regulatory switch. Nat Struct Biol 7: 626-633

    Article  PubMed  CAS  Google Scholar 

  • Robinson VL, Wu T, Stock AM (2003) Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 185: 4186-4194

    Article  PubMed  CAS  Google Scholar 

  • Scheeren-Groot EP, Rodenburg KW, den Dulk-Ras A, Turk SC, Hooykaas PJ (1994) Mutational analysis of the transcriptional activator VirG of Agrobacte-rium tumefaciens. J Bacteriol 176: 6418-6426

    PubMed  CAS  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Aoki S, Machida Y (1993) Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J Biol Chem 268: 26552-26558

    PubMed  CAS  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87: 6684-6688

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, An G, Flores C, Nester EW (1985a) A Tn3 lacZ transposon for the random generation of beta-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J 4: 891-898

    PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski PC (1985b) Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624-629

    Article  Google Scholar 

  • Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5: 1445-1454

    PubMed  CAS  Google Scholar 

  • Stachel SE, Nester EW, Zambryski PC (1986) A plant cell factor induces Agro-bacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379-383

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Zambryski PC (1986) virA and virG control the plant-induced activa-tion of the T-DNA transfer process of A. tumefaciens. Cell 46: 325-333

    Article  PubMed  CAS  Google Scholar 

  • Stephenson K, Lewis RJ (2005) Molecular insights into the initiation of sporula-tion in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 29: 281-301

    Article  PubMed  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduc-tion. Annu Rev Biochem 69: 183-215

    Article  PubMed  CAS  Google Scholar 

  • Toyoda-Yamamoto A, Shimoda N, Machida Y (2000) Genetic analysis of the signal-sensing region of the histidine protein kinase VirA of Agrobacterium tumefaciens. Mol Gen Genet 263: 939-947

    Article  PubMed  CAS  Google Scholar 

  • Tremblay DM, Tegoni M, Spinelli S, Campanacci V, Blangy S, Huyghe C, Desmyter A, Labrie S, Moineau S, Cambillau C (2006) Receptor-binding pro-tein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J Bacteriol 188: 2400-2410

    Article  PubMed  CAS  Google Scholar 

  • Varughese KI (2002) Molecular recognition of bacterial phosphorelay proteins. Curr Opin Microbiol 5: 142-148

    Article  PubMed  CAS  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Cell Biol 5: 1024-1037

    Article  CAS  Google Scholar 

  • Wang Y, Gao R, Lynn DG (2002) Ratcheting up vir gene expression in Agrobac-terium tumefaciens: coiled coils in histidine kinase signal transduction. Chembiochem 3: 311-317

    Article  PubMed  CAS  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26: 369-376

    Article  PubMed  CAS  Google Scholar 

  • Williams SB, Stewart V (1999) Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker re-gion amphipathic helices in transmembrane signal transduction. Molecular Microbiology 33: 1093-1102

    Article  PubMed  CAS  Google Scholar 

  • Winans SC (1991) An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol Microbiol 5: 2345-2350

    Article  PubMed  CAS  Google Scholar 

  • Winans SC, Kerstetter RA, Nester EW (1988) Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J Bacteriol 170: 4047-4054

    PubMed  CAS  Google Scholar 

  • Wise AA, Voinov L, Binns AN (2005) Intersubunit complementation of sugar signal transduction in VirA heterodimers and posttranslational regulation of VirA activity in Agrobacterium tumefaciens. J Bacteriol 187: 213-223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, YH., Binns, A.N., Lynn, D.G. (2008). The Initial Steps in Agrobacterium Tumefaciens Pathogenesis: Chemical Biology of Host Recognition. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_6

Download citation

Publish with us

Policies and ethics