Skip to main content

Agrobacterium is a bacterial plant pathogen capable of transferring a specific fragment of DNA, called the T-DNA, into plants and other organisms. Once in a eukaryotic cell, the T-DNA moves to the nucleus and integrates into the genome at an essentially random location. T-DNA integration generally leads to tumor formation in the plant host, and Agrobacterium’s ability to transfer DNA has been adapted as an important tool for mutagenesis and genetic engineering of plants and fungi. Agrobacterium tumefaciens C58 was the first species of Agrobacterium to have a fully-sequenced genome, and the sequence data are catalyzing expansion of A. tumefaciens research beyond its traditional focus on plant pathogenesis and T-DNA transfer. This chapter reviews many of the findings of the original genome publications and discusses many new insights derived from the availability of the genome sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14 References

  • Abella M, Erill I, Jara M, Mazon G, Campoy S, Barbe J (2004) Widespread distri-bution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum. Mol Microbiol 54: 212-222

    Article  PubMed  CAS  Google Scholar 

  • Allardet-Servent A, Michaux-Charachon S, Jumas-Bilak E, Karayan L, Ramuz M (1993) Presence of one linear and one circular chromosome in the Agrobacte-rium tumefaciens C58 genome. J Bacteriol 175: 7869-7874

    PubMed  CAS  Google Scholar 

  • Almiron M, Link AJ, Furlong D, Kolter R (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6: 2646-2654

    Article  PubMed  CAS  Google Scholar 

  • Ashby AM, Watson MD, Loake GJ, Shaw CH (1988) Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing pheno-lic compounds and soluble factors from monocotyledonous and dicotyledo-nous plants. J Bacteriol 170: 4181-4187

    PubMed  CAS  Google Scholar 

  • Baek CH, Farrand SK, Park DK, Lee KE, Hwang W, Kim KS (2005) Genes for utilization of deoxyfructosyl glutamine (DFG), an amadori compound, are widely dispersed in the family Rhizobiaceae. FEMS Microbiol Ecol 53: 221-233

    Article  PubMed  CAS  Google Scholar 

  • Baek SH, Shapleigh JP (2005) Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 cells. Appl Environ Microbiol 71: 4427-4436

    Article  PubMed  CAS  Google Scholar 

  • Balsiger S, Ragaz C, Baron C, Narberhaus F (2004) Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens. J Bacteriol 186: 6824-6829

    Article  PubMed  CAS  Google Scholar 

  • Bao K, Cohen SN (2003) Recruitment of terminal protein to the ends of Strepto-myces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev 17: 774-785

    Article  PubMed  CAS  Google Scholar 

  • Baron C, Domke N, Beinhofer M, Hapfelmeier S (2001) Elevated temperature dif-ferentially affects virulence, VirB protein accumulation, and T-pilus forma-tion in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J Bacteriol 183: 6852-6861

    Article  PubMed  CAS  Google Scholar 

  • Bartosik D, Baj J, Piechucka E, Waker E, Wlodarczyk M (2002) Comparative characterization of repABC-type replicons of Paracoccus pantotrophus com-posite plasmids. Plasmid 48: 130-141

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Chilton M-D (1982) T-DNA of the Agrobacterium Ti and Ri plas-mids. Annu Rev Genet 16: 357-384

    Article  PubMed  CAS  Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42: 575-606

    Article  CAS  Google Scholar 

  • Borucki B, von Stetten D, Seibeck S, Lamparter T, Michael N, Mroginski MA, Otto H, Murgida DH, Heyn MP, Hildebrandt P (2005) Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. J Biol Chem 280: 34358-34364

    Article  PubMed  CAS  Google Scholar 

  • Boussau B, Karlberg EO, Frank AC, Legault B-A, Andersson SG (2004) Compu-tational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA 101: 9722-9727

    Article  PubMed  CAS  Google Scholar 

  • Brassinga AKC, Siam R, McSween W, Winkler H, Wood D, Marczynski GT (2002) Conserved response regulator CtrA and IHF binding sites in the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii chromoso-mal replication origins. J Bacteriol 184: 5789-5799

    Article  PubMed  CAS  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F (2001) Analysis of the chromosome sequence of the legume symbiont Si-norhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98: 9877-9882

    Article  PubMed  CAS  Google Scholar 

  • Casjens S, Murphy M, DeLange M, Sampson L, van Vugt R, Huang WM (1997) Telomeres of the linear chromosomes of Lyme disease spirochaetes: nucleo-tide sequence and possible exchange with linear plasmid telomeres. Mol Microbiol 26: 581-596

    Article  PubMed  CAS  Google Scholar 

  • Ceci P, Ilari A, Falvo E, Chiancone E (2003) The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: x-ray crystal structure, iron binding, and hydroxyl-radical scavenging proper-ties. J Biol Chem 278: 20319-20326

    Article  PubMed  CAS  Google Scholar 

  • Cevallos MA, Porta H, Izquierdo J, Tun-Garrido C, Garcia-de-los-Santos A, Davila G, Brom S (2002) Rhizobium etli CFN42 contains at least three plas-mids of the repABC family: a structural and evolutionary analysis. Plasmid 48: 104-116

    Article  PubMed  CAS  Google Scholar 

  • Chaconas G (2005) Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58: 625-635

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Chen YC, Wood DW, Nester EW (2002) A new type IV secretion sys-tem promotes conjugal transfer in Agrobacterium tumefaciens. J Bacteriol 184: 4838-4845

    Article  PubMed  CAS  Google Scholar 

  • Cheneby D, Perrez S, Devroe C, Hallet S, Couton Y, Bizouard F, Iuretig G, Germon JC, Philippot L (2004) Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities. Can J Microbiol 50: 469-474

    Article  PubMed  CAS  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefa-ciens. Proc Natl Acad Sci USA 103: 7460-7464

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical sig-nals. Proc Natl Acad Sci USA 102: 14843-14848

    Article  PubMed  CAS  Google Scholar 

  • Chuchue T, Tanboon W, Prapagdee B, Dubbs JM, Vattanaviboon P, Mongkolsuk S (2006) ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens. J Bacte-riol 188: 842-851

    Article  CAS  Google Scholar 

  • Cooley MB, Kado CI (1991) Mapping of the ros virulence regulatory gene of A. tumefaciens. Mol Gen Genet 230: 24-27

    Article  PubMed  CAS  Google Scholar 

  • Copeland A, Lucas S, Lapidus A, Barry K, Detter JC, Glavina T, Hammon N, Israni S, Pitluck S, Richardson P, Mackenzie C, Choudhary M, Larimer F, Hauser LJ, Land M, Donohue TJ, Kaplan S (2005) Complete Sequence of Chromosome 1 of Rhodobacter sphaeroides 2.4.1. Unpublished, but available via GenBank at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genome&cmd=Retrieve&dopt=Overview&list_uids=18843

  • Csonka LN, O’Connor K, Larimer F, Richardson P, Lapidus A, Ewing AD, Goodner BW, and Oren A (2005) What we can deduce about metabolism in the moderate halophile Chromohalobacter salexigens from its genomic se-quence? In NA Oren, A Plemenita, eds, Adaptation To Life At High Salt Concentrations In Archaea, Bacteria, and Eukarya. Springer, Dordrecht

    Google Scholar 

  • Das S, Choudhuri K (2003) Identification of a unique IAHP (IcmF-associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol 3: 287-300

    PubMed  CAS  Google Scholar 

  • De Costa DM, Suzuki K, Yoshida K (2003) Structural and functional analysis of a putative gene cluster for palatinose transport on the linear chromosome of Agrobacterium tumefaciens MAFF301001. J Bacteriol 185: 2369-2373

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185: 760-771

    Article  PubMed  CAS  Google Scholar 

  • Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56: 1129-1138

    Article  PubMed  CAS  Google Scholar 

  • Egan ES, Lobner-Olesen A, Waldor MK (2004) Synchronous replication initiation of the two Vibrio cholerae chromosomes. Curr Biol 14: R501-502

    Article  PubMed  CAS  Google Scholar 

  • Eiamphungporn W, Nakjarung K, Prapagdee B, Vattanaviboon P, Mongkolsuk S (2003) Oxidant-inducible resistance to hydrogen peroxide killing in Agrobac-terium tumefaciens requires the global peroxide sensor-regulator OxyR and KatA. FEMS Microbiol Lett 225: 167-172

    Article  PubMed  CAS  Google Scholar 

  • Fernandez RF, Kunz DA (2005) Bacterial cyanide oxygenase is a suite of en-zymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate. J Bacteriol 187: 6396-6402

    Article  PubMed  CAS  Google Scholar 

  • Fu QS, Li F, Chen LL (2005) Gene expression analysis of six GC-rich Gram-negative phytopathogens. Biochem Biophys Res Commun 332: 380-387

    Article  PubMed  CAS  Google Scholar 

  • Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantifica-tion of glucose metabolism in seven bacterial species. J Bacteriol 187: 1581-1590

    Article  PubMed  CAS  Google Scholar 

  • Galhardo RS, Rocha RP, Marques MV, Menck CF (2005) An SOS-regulated op-eron involved in damage-inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Res 33: 2603-2614

    Article  PubMed  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzy-cki R, Thebault P, Vandenbol M, Vorholter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668-672

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez V, Bustos P, Ramirez-Romero MA, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodriguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Davila G (2003) The mosaic structure of the symbiotic plasmid of Rhizo-bium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4: R36

    Article  PubMed  Google Scholar 

  • Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103: 3834-3839

    Article  PubMed  Google Scholar 

  • Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao YW, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323-2328

    Article  PubMed  CAS  Google Scholar 

  • Goodner BW, Markelz BP, Flanagan MC, Crowell CB, Jr., Racette JL, Schilling BA, Halfon LM, Mellors JS, Grabowski G (1999) Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens. J Bacte-riol 181: 5160-5166

    CAS  Google Scholar 

  • Goshi K, Uchida T, Lezhava A, Yamasaki M, Hiratsu K, Shinkawa H, Kinashi H (2002) Cloning and analysis of the telomere and terminal inverted repeat of the linear chromosome of Streptomyces griseus. J Bacteriol 184: 3411-3415

    Article  PubMed  CAS  Google Scholar 

  • Hamilton RC, Fall MZ (1971) The loss of tumor initiating ability in Agrobacte-rium tumefaciens by incubation at high temperature. Experientia 27: 229-230

    Article  PubMed  CAS  Google Scholar 

  • Harvey M, McMeekin A (2004) Public-private collaborations and the race to sequence Agrobacterium tumefaciens. Nat Biotechnol 22: 807-810

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera patho-gen Vibrio cholerae. Nature 406: 477-483

    Article  PubMed  CAS  Google Scholar 

  • Holden MTG, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PCF, Parkhill J (2004) Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101: 14240-14245

    Article  PubMed  CAS  Google Scholar 

  • Hooykaas PJJ, Peerbolte R, Regensburg-Tuink AJ, de Vries P, Schilperoort RA (1982) A chromosomal linkage map of Agrobacterium tumefaciens and a comparison with the maps of Rhizobium spp. Mol Gen Genet 188: 12-17

    Article  CAS  Google Scholar 

  • Huang WM, Davis J, Ruan Q, Aron J, Goodner B, Pride N, Henry E, Sabo A, Telepak E, Joss L and Casjens S (2006) Linear chromosome end generating system of Agrobacterium tumefaciens C58. Submitted

    Google Scholar 

  • Inomata K, Hammam MAS, Kinoshita H, Murata Y, Khawn H, Noack S, Michael N, Lamparter T (2005) Sterically locked synthetic bilin derivatives and phyto-chrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. J Biol Chem 280: 24491-24497

    Article  PubMed  CAS  Google Scholar 

  • Jahns T, Schepp R, Siersdorfer C, Kaltwasser H (1998) Microbial urea-formaldehyde degradation involves a new enzyme, methylenediurease. Acta Biol Hung 49: 449-454

    PubMed  CAS  Google Scholar 

  • Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A (1998) Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 180: 2749-2755

    PubMed  CAS  Google Scholar 

  • Kahng LS, Shapiro L (2001) The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J Bacteriol 183: 3065-3075

    Article  PubMed  CAS  Google Scholar 

  • Kahng LS, Shapiro L (2003) Polar localization of replicon origins in the multipar-tite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J Bacteriol 185: 3384-3391

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic se-quence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9: 189-197

    Article  PubMed  Google Scholar 

  • Kanvinde L, Sastry GR (1990) Agrobacterium tumefaciens is a diazotrophic bac-terium. Appl Environ Microbiol 56: 2087-2092

    PubMed  CAS  Google Scholar 

  • Karlin S (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9: 335-343

    Article  PubMed  CAS  Google Scholar 

  • Karlin S, Barnett MJ, Campbell AM, Fisher RF, Mrazek J (2003) Predicting gene expression levels from codon biases in alpha-proteobacterial genomes. Proc Natl Acad Sci USA 100: 7313-7318

    Article  PubMed  CAS  Google Scholar 

  • Karniol B, Vierstra RD (2003) The pair of bacteriophytochromes from Agrobacte-rium tumefaciens are histidine kinases with opposing photobiological proper-ties. Proc Natl Acad Sci USA 100: 2807-2812

    Article  PubMed  CAS  Google Scholar 

  • Karniol B, Vierstra RD (2004) The HWE histidine kinases, a new family of bacte-rial two-component sensor kinases with potentially diverse roles in environ-mental signaling. J Bacteriol 186: 445-453

    Article  PubMed  CAS  Google Scholar 

  • Kim JG, Park BK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang I (2006) Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proc Natl Acad Sci USA 103: 8846-8851

    Article  PubMed  CAS  Google Scholar 

  • Lamparter T (2004) Evolution of cyanobacterial and plant phytochromes. FEBS Lett 573: 1-5

    Article  PubMed  CAS  Google Scholar 

  • Lamparter T (2006) A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions. BMC Bioinfor-matics 7: 141

    Article  CAS  Google Scholar 

  • Lamparter T, Michael N (2005) Agrobacterium phytochrome as an enzyme for the production of ZZE bilins. Biochemistry 44: 8461-8469

    Article  PubMed  CAS  Google Scholar 

  • Lamparter T, Michael N, Caspani O, Miyata T, Shirai K, Inomata K (2003) Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring A vinyl side chain. J Biol Chem 278: 33786-33792

    Article  PubMed  CAS  Google Scholar 

  • Lamparter T, Michael N, Mittmann F, Esteban B (2002) Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proc Natl Acad Sci USA 99: 11628-11633

    Article  PubMed  CAS  Google Scholar 

  • LaPointe G, Nautiyal CS, Chilton WS, Farrand SK, Dion P (1992) Spontaneous mutation conferring the ability to catabolize mannopine in Agrobacterium tu-mefaciens. J Bacteriol 174: 2631-2639

    PubMed  CAS  Google Scholar 

  • Lee DY, Ramos A, Macomber L, Shapleigh JP (2002) Taxis response of various denitrifying bacteria to nitrate and nitrite. Appl Environ Microbiol 68: 2140-2147

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Bostock RM (2006) Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola. Curr Genet 49: 309-322

    Article  PubMed  CAS  Google Scholar 

  • Lherbet C, Pojer F, Richard SB, Noel JP, Poulter CD (2006) Absence of substrate channeling between active sites in the Agrobacterium tumefaciens IspDF and IspE enzymes of the methyl erythritol phosphate pathway. Biochemistry 45: 3548-3553

    Article  PubMed  CAS  Google Scholar 

  • Li PL, Farrand SK (2000) The replicator of the nopaline-type Ti plasmid pTiC58 is a member of the repABC family and is influenced by the TraR-dependent quorum-sensing regulatory system. J Bacteriol 182: 179-188

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103: 4658-4662

    Article  PubMed  CAS  Google Scholar 

  • Lopez O, Morera C, Miranda-Rios J, Girard L, Romero D, Soberon M (2001) Regulation of gene expression in response to oxygen in Rhizobium etli: role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation. J Bacte-riol 183: 6999-7006

    Article  CAS  Google Scholar 

  • Lyi SM, Jafri S, Winans SC (1999) Mannopinic acid and agropinic acid catabo-lism region of the octopine-type Ti plasmid pTi15955. Mol Microbiol 31: 339-347

    Article  PubMed  CAS  Google Scholar 

  • MacLellan SR, Smallbone LA, Sibley CD, Finan TM (2005) The expression of a novel antisense gene mediates incompatibility within the large repABC family of alpha-proteobacterial plasmids. Mol Microbiol 55: 611-623

    Article  PubMed  CAS  Google Scholar 

  • MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM (2006) Identifica-tion of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons. Mol Microbiol 59: 1559-1575

    Article  PubMed  CAS  Google Scholar 

  • Marczynski GT, Shapiro L (2002) Control of chromosome replication in Caulo-bacter crescentus. Annu Rev Microbiol 56: 625-656

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Rodriguez S, Las Heras-Vazquez FJ, Clemente-Jimenez JM, Rodriguez-Vico F (2004) Biochemical characterization of a novel hydantoin racemase from Agrobacterium tumefaciens C58. Biochimie 86: 77-81

    Article  PubMed  CAS  Google Scholar 

  • Matthysse AG, Kijne JW (1998) Attachment of Rhizobiaceae to plant cells. In HP Spaink, A Kondorosi, PJJ Hooykaas, eds, The Rhizobiaceae: Molecular Biol-ogy of Model Plant-Associated Bacteria. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 235-249

    Google Scholar 

  • Matthysse AG, White S, Lightfoot R (1995) Genes required for cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 177: 1069-1075

    PubMed  CAS  Google Scholar 

  • Meletzus D, Rudnick P, Doetsch N, Green A, Kennedy C (1998) Characterization of the glnK-amtB operon of Azotobacter vinelandii. J Bacteriol 180: 3260-3264

    PubMed  CAS  Google Scholar 

  • Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argueso T, Palacios JM (2003) The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 48: 1195-1207

    Article  PubMed  CAS  Google Scholar 

  • Miller IS, Fox D, Saeed N, Borland PA, Miles CA, Sastry GR (1986) Enlarged map of Agrobacterium tumefaciens C58 and the location of the chromosomal regions which affect tumorigenicity. Mol Gen Genet 205: 153-159

    Article  CAS  Google Scholar 

  • Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S (1998) Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomo-nas campestris pv. phaseoli. J Bacteriol 180: 2636-2643

    PubMed  CAS  Google Scholar 

  • Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secre-tion apparatus. Science 312: 1526-1530

    Article  PubMed  CAS  Google Scholar 

  • Moreno E (1998) Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol Rev 22: 255-275

    Article  PubMed  CAS  Google Scholar 

  • Nair GR, Liu ZU, Binns AN (2003) Re-examining the role of the cryptic plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. Plant Physiol 133: 989-999

    Article  PubMed  CAS  Google Scholar 

  • Nakjarung K, Mongkolsuk S, Vattanaviboon P (2003) The oxyR from Agrobacte-rium tumefaciens: evaluation of its role in the regulation of catalase and per-oxide responses. Biochem Biophys Res Commun 304: 41-47

    Article  PubMed  CAS  Google Scholar 

  • Natera SH, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differen-tially displayed proteins as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13: 995-1009

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F (2001a) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29: 4800-4807

    Article  PubMed  CAS  Google Scholar 

  • Nocker A, Krstulovic NP, Perret X, Narberhaus F (2001b) ROSE elements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176: 44-51

    Article  PubMed  CAS  Google Scholar 

  • Oberpichler I, Molina I, Neubauer O, Lamparter T (2006) Phytochromes from Agrobacterium tumefaciens: difference spectroscopy with extracts of wild type and knockout mutants. FEBS Lett 580: 437-442

    Article  PubMed  CAS  Google Scholar 

  • Ochiai A, Hashimoto W, Murata K (2006a) A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: Molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 157: 642-649

    Article  PubMed  CAS  Google Scholar 

  • Ochiai A, Yamasaki M, Mikami B, Hashimoto W, Murata K (2006b) Crystalliza-tion and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15. Acta Crystallograph Sect F Struct Biol Cryst Commun 62: 486-488

    Article  CAS  Google Scholar 

  • Page WJ, Dale PL (1986) Stimulation of Agrobacterium tumefaciens growth by Azotobacter vinelandii Ferrisiderophores. Appl Environ Microbiol 51: 451-454

    PubMed  Google Scholar 

  • Pappas KM, Winans SC (2003) The RepA and RepB autorepressors and TraR play opposing roles in the regulation of a Ti plasmid repABC operon. Mol Microbiol 49: 441-455

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM (2002) The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci USA 99: 13148-13153

    Article  PubMed  CAS  Google Scholar 

  • Penyalver R, Oger P, Lopez MM, Farrand SK (2001) Iron-binding compounds from Agrobacterium spp.: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol 67: 654-664

    Article  PubMed  CAS  Google Scholar 

  • Perez-Mendoza D, Sepulveda E, Pando V, Munoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuan J (2005) Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 187: 7341-7350

    Article  PubMed  CAS  Google Scholar 

  • Pischl DL, Farrand SK (1984) Characterization of transposon Tn5-facilitated do-nor strains and development of a chromosomal linkage map for Agrobacte-rium tumefaciens. J Bacteriol 159: 1-8

    PubMed  CAS  Google Scholar 

  • Prapagdee B, Eiamphungporn W, Saenkham P, Mongkolsuk S, Vattanaviboon P (2004a) Analysis of growth phase regulated KatA and CatE and their physio-logical roles in determining hydrogen peroxide resistance in Agrobacterium tumefaciens. FEMS Microbiol Lett 237: 219-226

    PubMed  CAS  Google Scholar 

  • Prapagdee B, Vattanaviboon P, Mongkolsuk S (2004b) The role of a bifunctional catalase-peroxidase KatA in protection of Agrobacterium tumefaciens from menadione toxicity. FEMS Microbiol Lett 232: 217-223

    Article  PubMed  CAS  Google Scholar 

  • Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secre-tion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528-1533

    Article  PubMed  CAS  Google Scholar 

  • Ravin NV, Kuprianov VV, Gilcrease EB, Casjens SR (2003) Bidirectional replica-tion from an internal ori site of the linear N15 plasmid prophage. Nucleic Acids Res 31: 6552-6560

    Article  PubMed  CAS  Google Scholar 

  • Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, bio-chemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58: 165-178

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS, Hynes MF, Oresnik IJ (2004) A genetic locus necessary for rham-nose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacte-riol 186: 8433-8442

    Article  CAS  Google Scholar 

  • Robertson JL, Holliday T, Matthysse AG (1988) Mapping of Agrobacterium tumefaciens chromosomal genes affecting cellulose synthesis and bacterial attachment to host cells. J Bacteriol 170: 1408-1411

    PubMed  CAS  Google Scholar 

  • Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150: 3857-3866

    Article  PubMed  CAS  Google Scholar 

  • Rosen R, Buttner K, Becher D, Nakahigashi K, Yura T, Hecker M, Ron EZ (2002) Heat shock proteome of Agrobacterium tumefaciens: evidence for new control systems. J Bacteriol 184: 1772-1778

    Article  PubMed  CAS  Google Scholar 

  • Rosen R, Matthysse AG, Becher D, Biran D, Yura T, Hecker M, Ron EZ (2003) Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 44: 355-360

    Article  PubMed  CAS  Google Scholar 

  • Rosen R, Sacher A, Shechter N, Becher D, Buttner K, Biran D, Hecker M, Ron EZ (2004) Two-dimensional reference map of Agrobacterium tumefaciens proteins. Proteomics 4: 1061-1073

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg C, Huguet T (1984) The pAtC58 plasmid of Agrobacterium tumefa-ciens is not essential for tumour induction. Mol Gen Genet 196: 533-536

    Article  CAS  Google Scholar 

  • Roy AB, Hewlins MJ, Ellis AJ, Harwood JL, White GF (2003) Glycolytic break-down of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69: 6434-6441

    Article  PubMed  CAS  Google Scholar 

  • Sardesai N, Babu CR (2000) Cold stress induces switchover of respiratory path-way to lactate glycolysis in psychrotrophic Rhizobium strains. Folia Micro-biol (Praha) 45: 177-182

    Article  CAS  Google Scholar 

  • Schuerman PL, Liu JS, Mou H, Dandekar AM (1997) 3-Ketoglycoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens. Appl Microbiol Biotechnol 47: 560-565

    Article  PubMed  CAS  Google Scholar 

  • Smith LT, Smith GM, Madkour MA (1990) Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine. J Bacteriol 172: 6849-6855

    PubMed  CAS  Google Scholar 

  • Soberon N, Venkova-Canova T, Ramirez-Romero MA, Tellez-Sosa J, Cevallos MA (2004) Incompatibility and the partitioning site of the repABC basic rep-licon of the symbiotic plasmid from Rhizobium etli. Plasmid 51: 203-216

    Article  PubMed  CAS  Google Scholar 

  • Sonoda H, Suzuki K, Yoshida K (2002) Gene cluster for ferric iron uptake in Agrobacterium tumefaciens MAFF301001. Genes Genet Syst 77: 137-146

    Article  PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportun-istic pathogen. Nature 406: 959-964

    Article  PubMed  CAS  Google Scholar 

  • Suksomtip M, Liu P, Anderson T, Tungpradabkul S, Wood DW, Nester EW (2005) Citrate synthase mutants of Agrobacterium are attenuated in virulence and display reduced vir gene induction. J Bacteriol 187: 4844-4852

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Hattori Y, Uraji M, Ohta N, Iwata K, Murata K, Kato A, Yoshida K (2000) Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242: 331-336

    Article  PubMed  CAS  Google Scholar 

  • Tellez-Sosa J, Soberon N, Vega-Segura A, Torres-Marquez ME, Cevallos MA (2002) The Rhizobium etli cyaC product: characterization of a novel ade-nylate cyclase class. J Bacteriol 184: 3560-3568

    Article  PubMed  CAS  Google Scholar 

  • Trust W (1997) Summary of the Report of the Second International Strategy Meeting on Human Genome Sequencing.

    Google Scholar 

  • Ugalde JE, Parodi AJ, Ugalde RA (2003) De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci USA 100: 10659-10663

    Article  PubMed  CAS  Google Scholar 

  • Valladares A, Montesinos ML, Herrero A, Flores E (2002) An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol 43: 703-715

    Article  PubMed  CAS  Google Scholar 

  • Venkova-Canova T, Soberon NE, Ramirez-Romero MA, Cevallos MA (2004) Two discrete elements are required for the replication of a repABC plasmid: an antisense RNA and a stem-loop structure. Mol Microbiol 54: 1431-1444

    Article  PubMed  CAS  Google Scholar 

  • Willis LB, Walker GC (1999) A novel Sinorhizobium meliloti operon encodes an alpha-glucosidase and a periplasmic-binding-protein-dependent transport sys-tem for alpha-glucosides. J Bacteriol 181: 4176-4184

    PubMed  CAS  Google Scholar 

  • Wood DW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida Jr. NF, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee Sr. D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri P, Raymond C, Rouse R, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP, Olson MV, Nester EW (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317-2323

    Article  PubMed  CAS  Google Scholar 

  • Wood TK (2002) Active expression of soluble methane monooxygenase from Methylosinus trichosporium OB3b in heterologous hosts. Microbiology 148: 3328-3329

    PubMed  CAS  Google Scholar 

  • Xu XQ, Li LP, Pan SQ (2001) Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction. Mol Microbiol 42: 645-657

    Article  PubMed  CAS  Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7: R34

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277: 27689-27696

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Slater, S.C., Goodner, B.W., Setubal, J.C., Goldman, B.S., Wood, D.W., Nester, E.W. (2008). The Agrobacterium Tumefaciens C58 Genome. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_4

Download citation

Publish with us

Policies and ethics