Skip to main content

Serotonin Modulation of Cortical Activity

  • Chapter

Serotonin (5-hydroxytryptamine, 5-HT) is one of the phylogenetically older molecules used in cellular communications. It is present in the central nervous system(CNS) of vertebrate and invertebrate animals, and plays the role of neurotransmitter/neuromodulator. It also operates as a developmental signal in the CNS and regulates a variety of physiological functions in the periphery, such as intestinal motility, platelet aggregation, and vasoconstriction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adell, A., Celada, P., Abellán, M.T. and Artigas, F. (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res. Rev. 39, 154-180.

    PubMed  Google Scholar 

  • Aghajanian, G.K. and Lakoski, J.M. (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res. 305, 181-185.

    PubMed  Google Scholar 

  • Aghajanian, G.K. and Marek, G.J. (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589-599.

    PubMed  Google Scholar 

  • Aghajanian, G.K. and Marek, G.J. (1999a) Serotonin-glutamate interactions: a new target for antipsychotic drugs. Neuropsychopharmacology 21, S122-S133.

    Google Scholar 

  • Aghajanian, G.K. and Marek, G.J. (1999b) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate re-lease. Brain Res. 825, 161-171.

    PubMed  Google Scholar 

  • Amargós-Bosch, M., Bortolozzi, A., Puig, M.V., Serrats, J., Adell, A., Celada, P., Toth, M., Mengod, G. and Artigas, F. (2004) Co-expression and in vivo interaction of serotonin1a and serotonin2a receptors in pyramidal neurons of prefrontal cortex. Cereb. Cortex 14, 281-299.

    PubMed  Google Scholar 

  • Andrade, R. (1998) Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann. N.Y. Acad. Sci. 861, 190-203.

    PubMed  Google Scholar 

  • Andrade, R. and Nicoll, R.A. (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J. Physiol. 394, 99-124.

    PubMed  Google Scholar 

  • Andrade, R., Malenka, R.C. and Nicoll, R.A. (1986) A G-protein couples serotonin and GABAB receptors to the same channel in hippocampus. Science 234, 1261-1265.

    PubMed  Google Scholar 

  • Araneda, R. and Andrade, R. (1991) 5-Hydroxytryptamine-2 and 5-hydroxytryptamine-1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40, 399-412.

    PubMed  Google Scholar 

  • Arvanov, V.L., Liang, X., Magro, P., Roberts, R. and Wang, R.Y. (1999) A pre- and postsy-naptic modulatory action of 5-HT and the 5-HT2A/ 2C receptor agonist DOB on NMDA-evoked responses in the rat medial prefrontal cortex. Eur. J. Neurosci. 11, 2917-2934.

    PubMed  Google Scholar 

  • Ashby Jr., C.R., Edwards, E., Harkins, K. and Wang, R.Y. (1989a) Effects of (±)-DOI on medial prefrontal cortical cells: a microiontophoretic study. Brain Res. 498, 393-396.

    PubMed  Google Scholar 

  • Ashby Jr., C.R., Edwards, E., Harkins, K. and Wang, R.Y. (1989b) Characterization of 5-hydroxytryptamine3 receptors in the medial prefrontal cortex: a microiontophoretic study. Eur. J. Pharmacol. 173, 193-196.

    PubMed  Google Scholar 

  • Ashby, Jr., C.R., Jiang, L.H., Kasser, R.J. and Wang, R.Y. (1990) Electrophysiological charac-terization of 5-hydroxytryptamine-2 receptors in the rat medial prefrontal cortex. J. Phar-macol. Exp. Ther. 252, 171-178.

    Google Scholar 

  • Ashby Jr., C.R., Minabe, Y., Edwards, E. and Wang, R.Y. (1991) 5-HT3-like receptors in the rat medial prefrontal cortex: an electrophysiological study. Brain Res. 550, 181-191.

    PubMed  Google Scholar 

  • Ashby, Jr., C.R., Edwards, E. and Wang, R.Y. (1992) Action of serotonin in the medial pre-frontal cortex: mediation by serotonin3-like receptors. Synapse 10, 7-15.

    PubMed  Google Scholar 

  • Ashby, Jr., C.R., Edwards, E. and Wang, R.Y. (1994) Electrophysiological evidence for a functional interaction between 5-HT(1A) and 5-HT(2A) receptors in the rat medial pre-frontal cortex: an iontophoretic study. Synapse 17, 173-181.

    PubMed  Google Scholar 

  • Azmitia, E.C., Gannon, P.J., Kheck, N.M. and Whitaker-Azmitia, P.M. (1996) Cellular local-ization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychophar-macology 14, 35-46.

    Google Scholar 

  • Barnes, N.M. and Sharp, T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083-1152.

    PubMed  Google Scholar 

  • Berendse, H.W. and Groenewegen, H.J. (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42, 73-102.

    PubMed  Google Scholar 

  • Beique, J.C., Campbell, B., Perring, P., Hamblin, M.W., Walker, P., Mladenovic, L. and Andrade, R. (2004) Serotonergic regulation of membrane potential in developing rat pre-frontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J. Neurosci. 24, 4807-4817.

    PubMed  Google Scholar 

  • Blier, P. and de Montigny, C. (1987) Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1, 470-480.

    PubMed  Google Scholar 

  • Blue, M.E., Yagaloff, K.A., Mamounas, L.A., Hartig, P.R. and Molliver, M.E. (1988) Corre-spondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res. 453, 315-328.

    PubMed  Google Scholar 

  • Borsini, F., Giraldo, E., Monferini, E., Antonini, G., Parenti, M., Bietti, G. and Donetti, A. (1995) BIMT 17, a 5-HT2A receptor antagonist and 5-HT1A receptor full agonist in rat cerebral cortex. Naunyn-Schmiedeberg’s Arch. Pharmacol. 352, 276-282.

    Google Scholar 

  • Burnet, P.W., Eastwood, S.L., Lacey, K. and Harrison, P.J. (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res. 676, 157-168.

    PubMed  Google Scholar 

  • Carr, D.B. and Sesack, S.R. (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20, 3864-3873.

    PubMed  Google Scholar 

  • Casanovas, J.M., Berton, O., Celada, P. and Artigas, F. (2000) In vivo actions of the selective 5-HT1A receptor agonist BAY x 3702 on serotonergic cell firing and release. Naunyn-Schmiedebergs Arch. Pharmacol. 362, 248-254.

    Google Scholar 

  • Celada, P., Puig, M.V., Casanovas, J.M., Guillazo, G. and Artigas, F. (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 21, 9917-9929.

    PubMed  Google Scholar 

  • Chaput, Y. and de Montigny, C. (1988) Effects of the 5-hydroxytryptamine receptor antago-nist, BMY 7378, on 5-hydroxytryptamine neurotransmission: electrophysiological studies in the rat central nervous system. J. Pharmacol. Exp. Ther. 246, 359-370.

    PubMed  Google Scholar 

  • Clarke, H.F., Dalley, J.W., Crofts, H.S., Robbins, T.W. and Roberts, A.C. (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304, 878-880.

    PubMed  Google Scholar 

  • Clemett, D.A., Punhani, T., Duxon, M.S., Blackburn, T.P. and Fone, K.C. (2000) Immunohis-tochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39, 123-132.

    PubMed  Google Scholar 

  • Compan, V., Segu, L., Buhot, M.C. and Daszuta, A. (1998) Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of se-rotonergic neurons. Brain Res. 793, 103-111.

    PubMed  Google Scholar 

  • Cruz, D.A., Eggan, S.M., Azmitia, E.C. and Lewis, D.A. (2004) Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. Am. J. Psychiatry 161, 739-742.

    PubMed  Google Scholar 

  • Czyrak, A., Czepiel, K., Mackowiak, M., Chocyk, A. and Wedzony, K. (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res. 989, 42-51.

    PubMed  Google Scholar 

  • Davies, M.F., Deisz, R.A., Prince, D.A. and Peroutka, S.J. (1987) Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res. 423, 347-352.

    PubMed  Google Scholar 

  • De Felipe, J., Arellano, J.I., Gomez, A., Azmitia, E.C. and Muñoz, A. (2001) Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cere-bral cortex. J. Comp. Neurol. 433, 148-155.

    Google Scholar 

  • De Quervain, D.J., Henke, K., Aerni, A., Coluccia, D., Wollmer, M.A., Hock, C., Nitsch, R.M. and Papassotiropoulos, A. (2003) A functional genetic variation of the 5-HT2A receptor affects human memory. Nat. Neurosci. 6, 1141-1142.

    PubMed  Google Scholar 

  • De Vry, J. (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology 121, 1-26.

    PubMed  Google Scholar 

  • Diaz-Mataix, L., Artigas, F. and Celada, P. (2006) Activation of pyramidal cells in rat medial prefrontal cortex projecting to ventral tegmental area by a 5-HT1A receptor agonist. Eur. Neuropsychopharmacol. 16, 288-296.

    PubMed  Google Scholar 

  • Edwards, E., Ashby, C.R. and Wang, R.Y. (1991) The effect of typical and atypical antipsy-chotic drugs on the stimulation of phosphoinositide hydrolysis produced by the 5-HT3 re-ceptor agonist 2-methyl-serotonin. Brain Res. 545, 276-278.

    PubMed  Google Scholar 

  • Erlander, M.G., Lovenberg, T.W., Baron, B.M., de Lecea, L., Danielson, P.E., Racke, M., Slone, A.L., Siegel, B.W., Foye, P.E., Cannon, K., Burns, J.E. and Sutcliffe J.G. (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially ex-pressed in rat brain. Proc. Natl. Acad. Sci. U.S.A. 90, 3452-3456.

    PubMed  Google Scholar 

  • Férézou, I., Cauli, B., Hill, E.L., Rossier, J., Hamel, E. and Lambolez, B. (2002) 5-HT3 recep-tors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal pep-tide/cholecystokinin interneurons. J. Neurosci. 22, 7389-7397.

    PubMed  Google Scholar 

  • Fuster, J.M. (1997) The prefrontal cortex. Anatomy, physiology and neuropsychology of the frontal lobe. Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Gerard, C., el Mestikawy, S., Lebrand, C., Adrien, J., Ruat, M., Traiffort, E., Hamon, M. and Martres, M.P. (1996) Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7 dihydroxytryptamine-treated rats. Synapse 23, 164-173.

    PubMed  Google Scholar 

  • Gerard, C., Martres, M.P., Lefevre, K., Miquel, M.C., Verge, D., Lanfumey, L., Doucet, E., Hamon, M. and el Mestikawy, S. (1997) Immuno-localization of serotonin 5-HT6 recep-tor-like material in the rat central nervous system. Brain Res. 746, 207-219.

    PubMed  Google Scholar 

  • Gustafson, E.L., Durkin, M.M., Bard, J.A., Zgombick, J. and Branchek, T.A. (1996) A recep-tor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain. Br. J. Pharmacol. 117, 657-666.

    PubMed  Google Scholar 

  • Hajós, M., Gartside, S.E. and Sharp, T. (1995) Inhibition of median and dorsal raphe neurones following administration of the selective serotonin reuptake inhibitor paroxetine. Naunyn-Schmied. Arch. Pharmacol. 351, 624-629.

    Google Scholar 

  • Hajós, M., Hajos-Korcsok, E. and Sharp, T. (1999) Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br. J. Pharmacol. 126, 1741-1750.

    PubMed  Google Scholar 

  • Hajós, M., Gartside, S.E., Varga, V. and Sharp, T. (2003) In vivo inhibition of neuronal activ-ity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A re-ceptors. Neuropharmacology 45, 72-81.

    PubMed  Google Scholar 

  • Hall, H., Farde, L., Halldin, C., Lundkvist, C., Sedvall, G. (2000) Autoradiographic localiza-tion of 5-HT(2A) receptors in the human brain using [3H]M100907 and [11C]M100907. Synapse 38, 421-431.

    PubMed  Google Scholar 

  • Harder, J.A. and Ridley, R.M. (2000) The 5-HT1A antagonist WAY 100 635 alleviates cogni-tive impairments induced by dizocilpine (MK-801) in monkeys. Neuropharmacology 39, 547-552.

    PubMed  Google Scholar 

  • Higgins, G.A. and Kilpatrick, G.J. (1999) 5-HT(3) receptor antagonists. Expert Opin. Investig. Drugs 8, 2183-2188.

    Google Scholar 

  • Innis, R.B. and Aghajanian, G.K. (1987) Pertussis toxin blocks 5-HT1A and GABAB receptor-mediated inhibition of serotonergic neurons. Eur. J. Pharmacol. 143, 195-204.

    PubMed  Google Scholar 

  • Jacobs, B.L. and Azmitia, E.C. (1992) Structure and function of the brain serotonin system. Physiol. Rev. 72, 165-229.

    PubMed  Google Scholar 

  • Jakab, R.L. and Goldman-Rakic, P.S. (1998) 5-Hydroxytryptamine(2A) serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl. Acad. Sci. U.S.A. 95, 735-740.

    PubMed  Google Scholar 

  • Jakab, R.L. and Goldman-Rakic, P.S. (2000) Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J. Comp. Neurol. 417, 337-348.

    PubMed  Google Scholar 

  • Jankowski, M.P. and Sesack, S.R. (2002) Electron microscopic analysis of the GABA projec-tion from the dorsal raphe nucleus to the prefrontal cortex in the rat. Soc. Neurosci. Abs. 587.8.

    Google Scholar 

  • Jansson, A., Tinner, B., Bancila, M., Verge, D., Steinbusch, H.W., Agnati, L.F. and Fuxe, K. (2001) Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J. Chem. Neuroanat. 22, 185-203.

    PubMed  Google Scholar 

  • Krnjevic, K. and Phillis, J.W. (1963) Iontophoretic studies of neurones in the mammalian cerebral cortex. J. Physiol. 165, 274-304.

    PubMed  Google Scholar 

  • Kia, H.K., Brisorgueil, M.J., Hamon, M., Calas, A. and Vergé, D. (1996) Ultrastructural local-ization of 5-hydroxytryptamine(1A) receptors in the rat brain. J. Neurosci. Res. 46, 697-708.

    PubMed  Google Scholar 

  • Lambe, E.K. and Aghajanian, G.K. (2004) Serotonin (5-HT) supresses electrophysiological effects by hallucinogens in rat prefrontal cortex. Program No. 394.3. Abstract Viewer/ Intinerary Planner. Washington, DC: Society for Neuroscience, 2004.

    Google Scholar 

  • Liu, S., Bubar, M.J., Lanfranco, M.F., Hillman, G.R. and Cunningham, K.A. Serotonin (2C) receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience. 2007 Apr 27; [Epub, ahead of print]

    Google Scholar 

  • López-Giménez, J.F., Vilaró, M.T., Palacios, J.M. and Mengod, G. (1998) [3H] MDL100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37, 1147-1158.

    PubMed  Google Scholar 

  • Ma, L., Shalinsky, M.H., Alonso, A. and Dickson, C.T. (2007) Effects of serotonin on the intrinsic membrane properties of layer II medial entorhinal cortex neurons. Hippocampus 17, 114-129.

    PubMed  Google Scholar 

  • Martín-Ruiz, R., Puig, M.V., Celada, P., Shapiro, D.A., Roth, B.L., Mengod, G. and Artigas, F. (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A re-ceptors through a glutamate-dependent mechanism. J. Neurosci. 21, 9856-9866.

    PubMed  Google Scholar 

  • Martin-Cora, F.J., Pazos, A. (2004) Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br. J. Pharmacol. 141, 92-104.

    PubMed  Google Scholar 

  • Martinez, D., Hwang, D.R., Mawlawi, O., Slifstein, M., Kent, J., Simpson, N., Parsey, R.V., Hashimoto, T., Huang, Y.Y., Shinn, A., VanHeertum, R., Abidargham, A., Caltabiano, S., Malizia, A., Cowley, H., Mann, J.J. and Laruelle, M. (2001) Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol: a dose-occupancy study with [C-11]WAY 100635 and positron emission tomography in humans. Neuropsycho-pharmacology 24, 209-229.

    Google Scholar 

  • Mello e Souza, T., Rodrigues, C., Souza, M.M., Vinade, E., Coitinho, A., Choi, H. and Izquierdo, I. (2001) Involvement of the serotonergic type 1A (5-HT1A) receptor in the agranular insular cortex in the consolidation of memory for inhibitory avoidance in rats. Behav. Pharmacol. 12, 349-353.

    PubMed  Google Scholar 

  • Miner, L.A.H., Backstrom, J.R., Sanders-Bush, E. and Sesack, S.R. (2003) Ultrastructural localization of serotonin-2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116, 107-117.

    PubMed  Google Scholar 

  • Misane, I. and Ögren, S.O. (2003) Selective 5-HT1A antagonists WAY 100635 and NAD-299 attenuate the impairment of passive avoidance caused by scopolamine in the rat. Neuro-psychopharmacology 28, 253-264.

    Google Scholar 

  • Morales, M. and Bloom, F.E. (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J. Neurosci. 17, 3157-3167.

    PubMed  Google Scholar 

  • Newberry, N.R., Footitt, D.R., Papanastassiou, V. and Reynolds, D.J. (1999) Actions of 5-HT on human neocortical neurones in vitro. Brain Res. 833, 93-100.

    PubMed  Google Scholar 

  • Offord, S.J., Ordway, G.A. and Frazer, A. (1988) Application of (125I)iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J. Pharmacol. Exp. Ther. 244, 144-153.

    PubMed  Google Scholar 

  • Pandey, G.N., Dwivedi, Y., Ren, X., Rizavi, H.S., Faludi, G., Sarosi, A. and Palkovits, M. (2006) Regional distribution and relative abundance of serotonin(2c) receptors in human brain: effect of suicide. Neurochem. Res. 31, 167-176.

    PubMed  Google Scholar 

  • Paxinos, G. and Watson, C. (1998) The rat brain in stereotaxic coordinates. 4th edn. Sydney: Academic Press.

    Google Scholar 

  • Pazos, A. and Palacios, J.M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 346, 205-230.

    PubMed  Google Scholar 

  • Pazos, A., Cortés, R. and Palacios, J.M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res. 346, 231-249.

    PubMed  Google Scholar 

  • Pompeiano, M., Palacios, J.M. and Mengod, G. (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J. Neurosci. 12, 440-453.

    PubMed  Google Scholar 

  • Pompeiano, M., Palacios, J.M. and Mengod, G. (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol. Brain. Res. 23, 163-178.

    PubMed  Google Scholar 

  • Puig, M.V., Celada, P., Díaz-Mataix, L. and Artigas, F. (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors. Re-lationship to thalamocortical afferents. Cereb. Cortex 13, 1870-1882.

    Google Scholar 

  • Puig, M.V., Santana, N., Celada, P., Mengod, G. and Artigas, F. (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb. Cor-tex 14, 1365-1375.

    Google Scholar 

  • Puig, M.V., Artigas, F. and Celada, P. (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb. Cortex 15, 1-14.

    PubMed  Google Scholar 

  • Reader, T.A., Ferron, A., Descarries, L. and Jasper, H.H. (1979) Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Res. 160, 217-229.

    PubMed  Google Scholar 

  • Riad, M., Garcia, S., Watkins, K.C., Jodoin, N., Doucet, E., Langlois, X., El Mestikawy, S., Hamon, M. and Descarries, L. (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J. Comp. Neurol. 417, 181-194.

    PubMed  Google Scholar 

  • Roberts, M.H. and Straughan, D.W. (1967) Excitation and depression of cortical neurones by 5-hydroxytryptamine. J. Physiol. 193, 269-294.

    PubMed  Google Scholar 

  • Santana, N., Bortolozzi, A., Serrats, J., Mengod, G. and Artigas, F. (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 14, 1100-1109.

    PubMed  Google Scholar 

  • Sari, Y. (2004) Serotonin(1B) receptors: from protein to physiological function and behavior. Neurosci. Biobehav. Rev. 28, 565-582.

    PubMed  Google Scholar 

  • Sheldon, P.W. and Aghajanian, G.K. (1991) Excitatory responses to serotonin (5-HT) in neurons of the rat piriform cortex: evidence for mediation by 5-HT1C receptors in py-ramidal cells and 5-HT2 receptors in interneurons. Synapse 9, 208-218.

    PubMed  Google Scholar 

  • Sprouse, J.S. and Aghajanian, G.K. (1987) Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1, 3-9.

    PubMed  Google Scholar 

  • Staubli, U. and Xu, F.B. (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J. Neurosci. 15, 2445-2452.

    PubMed  Google Scholar 

  • Sirota, P., Mosheva, T., Shabtay, H., Giladi, N. and Korczyn, A.D. (2000) Use of the selective serotonin 3 receptor antagonist ondansetron in the treatment of neuroleptic-induced tardive dyskinesia. Am. J. Psychiatry 157, 287-289.

    PubMed  Google Scholar 

  • Swanson, L.W. (1998) Brain Maps: Structure of the Rat Brain. Elsevier. Amsterdam.

    Google Scholar 

  • Tada, K., Kasamo, K., Ueda, N., Suzuki, T., Kojima, T. and Ishikawa, K. (1999) Anxiolytic 5-hydroxytryptamine1A agonists suppress firing activity of dorsal hippocampus CA1 py-ramidal neurons through a postsynaptic mechanism: single-unit study in unanesthetized, unrestrained rats. J. Pharmacol. Exp. Ther. 288, 843-848.

    PubMed  Google Scholar 

  • Tanaka, E. and North, R.A. (1993) Actions of 5 hydroxytryptamine on neurons of the rat cingulate cortex. J. Neurophysiol. 69, 1749-1757.

    PubMed  Google Scholar 

  • Vilaró, M.T., Cortes, R., Gerald, C., Branchek, T.A., Palacios, J.M. and Mengod, G. (1996) Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Brain Res. Mol. Brain Res. 43, 356-360.

    PubMed  Google Scholar 

  • Vilaró, M.T., Cortés, R. and Mengod, G. (2005) Serotonin 5-HT4 receptors and their mPRNAs in rat and guinea pig brain: distribution and effect of neurotoxic lesions. J. Comp. Neurol. 484, 418-439.

    PubMed  Google Scholar 

  • Villalobos, C., Beique, J.C., Gingrich, J.A. and Andrade, R. (2005) Serotonergic regulation of calcium-activated potassium currents in rodent prefrontal cortex. Eur. J. Neurosci. 22, 1120-1126.

    PubMed  Google Scholar 

  • Waeber, C., Sebben, M., Nieoullon, A., Bockaert, J. and Dumuis, A. (1994) Regional distribu-tion and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology 33, 527-541.

    PubMed  Google Scholar 

  • Watling, K.J., Beer, M.S. and Stanton, J.A. (1989) Effects of clozapine and other neuroleptics on binding of [3H]-Q ICS 205-930 to central 5-HT3 recognition sites. Br. J. Pharmacol. 98 (Suppl.), 813P.

    Google Scholar 

  • Williams, G.V. and Goldman-Rakic P.S. (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572-575.

    PubMed  Google Scholar 

  • Williams, J.T., Colmers, W.F. and Pan, Z.Z. (1988) Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vivo. J. Neurosci. 8, 3499-3506.

    PubMed  Google Scholar 

  • Williams, G.V., Rao, S.G. and Goldman-Rakic, P.S. (2002) The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 22, 2843-2854.

    PubMed  Google Scholar 

  • Willins, D.L., Deutch, A.Y. and Roth, B.L. (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27, 79-82.

    PubMed  Google Scholar 

  • Xiang, Z. and Prince, D.A. (2003) Heterogeneous actions of serotonin on interneurons in rat visual cortex. J. Neurophysiol. 89, 1278-1287.

    PubMed  Google Scholar 

  • Zhang, Z.W. (2003) Serotonin induces tonic firing in layer V pyramidal neurons of rat pre-frontal cortex during postnatal development. Neuroscience 23(8), 3373-3384.

    PubMed  Google Scholar 

  • Zhang, J.Y., Ashby, C.R. and Wang, R.Y. (1994) Effect of pertussis toxin on the response of rat medial prefrontal cortex cells to the iontophoresis of serotonin receptor agonists. J. Neural. Transm-Gen. Sect. 95, 165-172.

    PubMed  Google Scholar 

  • Zhou, F.M. and Hablitz, J.J. (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J. Neurophysiol. 82, 2989-2999.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Celada, P., Artigas, F. (2007). Serotonin Modulation of Cortical Activity. In: Tseng, KY., Atzori, M. (eds) Monoaminergic Modulation of Cortical Excitability. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72256-6_4

Download citation

Publish with us

Policies and ethics