Regulation of Cortical Functions by the Central Noradrenergic System: Emerging Properties from an Old Friend

  • Marco Atzori
  • Humberto Salgado
  • Kuei-Yuan Tseng

(VTA)-dopamine (DA) systems are two important brainstem neuromodulatory ascending pathways with a widespread cortical distribution. Historically, the NE system has been implicated in arousal whereas DA signals have been linked to reward and motivation. In addition to this early interpretation, recent findings indicate that the NE system also play an important role in the control of complex behaviors (Devilbiss and Waterhouse, 2004; Aston-Jones and Cohen, 2005a; Chamberlain et al., 2006). For example, neuronal activity in the LC, particularly the phasic firing mode, has been associated to the outcome of certain task-related decision processes, and it has been proposed that this enhancement of NE signal (presumably in the cortex) helps to optimize task performance (Aston-Jones and Cohen, 2005a). A similar pattern of firing response to task-related events has also been observed in DA neurons (Lidow et al., 1998). These data suggest that both NE and DA systems are responsive to motivationally salient events such as reward predictors.

The central NE system also plays a crucial role in determining the outcome of brain function in response to acute and chronic stress. Many neurochemical studies, in fact, have shown that NE is able to produce a stress response resulting from activation of the hypothalamus-pituitary-adrenal axis

In the past 20 years, extensive studies have been conducted to elucidate the role of LC NE during complex and specific behavioral performances and stress. Although the global effect of NE activation seems to lead to overall increases in neural responsiveness, alertness, and a temporary refinement of perceptual receptive fields, little is known about how NE receptors interact with other neural systems, in particular in brain regions involved in executive functions and cognition. In this chapter we will first review data from animal studies reporting the effects of NE on cortical neurons, and, secondly, we will summarize how NE-single cell interactions impact cortical functions by changing the behavior of cortical circuits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K., 1985. Modulation of a transient outward current in serotonergic neurones by alpha 1-adrenoceptors. Nature. 315, 501-503.CrossRefPubMedGoogle Scholar
  2. Altman, I. M. and Corcoran, M. E., 1983. Facilitation of neocortical kindling by depletion of forebrain noradrenaline. Brain Res. 270, 174-177.CrossRefPubMedGoogle Scholar
  3. Andrews, G. D. and Lavin, A., 2006. Methylphenidate increases cortical excitability via acti-vation of alpha-2 noradrenergic receptors. Neuropsychopharmacology. 31, 594-601.CrossRefPubMedGoogle Scholar
  4. Arnsten, A. F., Cai, J. X. and Goldman-Rakic, P. S., 1988. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci. 8, 4287-4298.PubMedGoogle Scholar
  5. Arnsten, A. F. and Li, B. M., 2005. Neurobiology of executive functions: catecholamine influ-ences on prefrontal cortical functions. Biol Psychiatry. 57, 1377-1384.CrossRefPubMedGoogle Scholar
  6. Aston-Jones, G. and Bloom, F. E., 1981a. Activity of norepinephrine-containing locus coe-ruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neu-rosci. 1, 876-886.Google Scholar
  7. Aston-Jones, G. and Bloom, F. E., 1981b. Nonrepinephrine-containing locus coeruleus neu-rons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci. 1, 887-900.PubMedGoogle Scholar
  8. Aston-Jones, G. and Cohen, J. D., 2005a. Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 493, 99-110.CrossRefPubMedGoogle Scholar
  9. Aston-Jones, G. and Cohen, J. D., 2005b. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 28, 403-450.CrossRefPubMedGoogle Scholar
  10. Bennett, B. D., Huguenard, J. R. and Prince, D. A., 1998. Adrenergic modulation of GABAA receptor-mediated inhibition in rat sensorimotor cortex. J Neurophysiol. 79, 937-946.PubMedGoogle Scholar
  11. Birnbaum, S. G., Yuan, P. X., Wang, M., Vijayraghavan, S., Bloom, A. K., Davis, D. J., Gobeske, K. T., Sweatt, J. D., Manji, H. K. and Arnsten, A. F., 2004. Protein kinase C over-activity impairs prefrontal cortical regulation of working memory. Science. 306, 882-884.CrossRefPubMedGoogle Scholar
  12. Castner, S. A. and Goldman-Rakic, P. S., 2004. Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci. 24, 1446-1450.CrossRefPubMedGoogle Scholar
  13. Castner, S. A., Goldman-Rakic, P. S. and Williams, G. V., 2004. Animal models of working memory: insights for targeting cognitive dysfunction in schizophrenia. Psychopharmacol-ogy (Berl). 174, 111-125.Google Scholar
  14. Cecchi, M., Khoshbouei, H. and Morilak, D. A., 2002. Modulatory effects of norepinephrine, acting on alpha 1 receptors in the central nucleus of the amygdala, on behavioral and neu-roendocrine responses to acute immobilization stress. Neuropharmacology. 43, 1139-1147.CrossRefPubMedGoogle Scholar
  15. Chamberlain, S. R., Muller, U., Blackwell, A. D., Robbins, T. W. and Sahakian, B. J., 2006. Noradrenergic modulation of working memory and emotional memory in humans. Psy-chopharmacology (Berl). 188, 397-407.CrossRefGoogle Scholar
  16. Charpak, S., Gahwiler, B. H., Do, K. Q. and Knopfel, T., 1990. Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature. 347, 765-767.CrossRefPubMedGoogle Scholar
  17. Cornil, C. A., Balthazart, J., Motte, P., Massotte, L. and Seutin, V., 2002. Dopamine activates noradrenergic receptors in the preoptic area. J Neurosci. 22, 9320-9330.PubMedGoogle Scholar
  18. Devilbiss, D. M. and Waterhouse, B. D., 2000. Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse. 37, 273-282.CrossRefPubMedGoogle Scholar
  19. Devilbiss, D. M. and Waterhouse, B. D., 2004. The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. J Neurosci. 24, 10773-10785.CrossRefPubMedGoogle Scholar
  20. Dodt, H. U., Pawelzik, H. and Zieglgansberger, W., 1991. Actions of noradrenaline on neocor-tical neurons in vitro. Brain Res. 545, 307-311.CrossRefPubMedGoogle Scholar
  21. Foehring, R. C., Schwindt, P. C. and Crill, W. E., 1989. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons. J Neurophysiol. 61, 245-256.PubMedGoogle Scholar
  22. Foote, S. L., Aston-Jones, G. and Bloom, F. E., 1980. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A. 77, 3033-3037.CrossRefPubMedGoogle Scholar
  23. Foote, S. L., Bloom, F. E. and Aston-Jones, G., 1983. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev. 63, 844-914.PubMedGoogle Scholar
  24. Fukudome, Y., Ohno-Shosaku, T., Matsui, M., Omori, Y., Fukaya, M., Tsubokawa, H., Taketo, M. M., Watanabe, M., Manabe, T. and Kano, M., 2004. Two distinct classes of mus-carinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neuro-sci. 19, 2682-2692.CrossRefGoogle Scholar
  25. Gellman, R. L. and Aghajanian, G. K., 1993. Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 600, 63-73.CrossRefPubMedGoogle Scholar
  26. Goldman-Rakic, P. S., Castner, S. A., Svensson, T. H., Siever, L. J. and Williams, G. V., 2004. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dys-function. Psychopharmacology (Berl). 174, 3-16.CrossRefGoogle Scholar
  27. Hasselmo, M. E. and Bower, J. M., 1992. Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J Neurophysiol. 67, 1222-1229.PubMedGoogle Scholar
  28. Hasselmo, M. E., Linster, C., Patil, M., Ma, D. and Cekic, M., 1997. Noradrenergic suppres-sion of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol. 77, 3326-3339.PubMedGoogle Scholar
  29. Hieble, J. P. and Ruffolo, Jr., R. R., 1996. Subclassification and nomenclature of alpha 1- and alpha 2-adrenoceptors. Prog Drug Res. 47, 81-130.PubMedGoogle Scholar
  30. Hurley, L. M., Devilbiss, D. M. and Waterhouse, B. D., 2004. A matter of focus: mono-aminergic modulation of stimulus coding in mammalian sensory networks. Curr Opin Neurobiol. 14, 488-495.CrossRefPubMedGoogle Scholar
  31. Kawaguchi, Y. and Shindou, T., 1998. Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J Neurosci. 18, 6963-6976.PubMedGoogle Scholar
  32. Kobayashi, M., Imamura, K., Sugai, T., Onoda, N., Yamamoto, M., Komai, S. and Watanabe, Y., 2000. Selective suppression of horizontal propagation in rat visual cortex by norepinephrine. Eur J Neurosci. 12, 264-272.CrossRefPubMedGoogle Scholar
  33. Law-Tho, D., Crepel, F. and Hirsch, J. C., 1993. Noradrenaline decreases transmission of NMDA- and non-NMDA-receptor mediated monosynaptic EPSPs in rat prefrontal neu-rons in vitro. Eur J Neurosci. 5, 1494-1500.CrossRefPubMedGoogle Scholar
  34. Lidow, M. S., Williams, G. V. and Goldman-Rakic, P. S., 1998. The cerebral cortex: a case for a common site of action of antipsychotics. Trends Pharmacol Sci. 19, 136-140.CrossRefPubMedGoogle Scholar
  35. Liu, W., Yuen, E. Y., Allen, P. B., Feng, J., Greengard, P. and Yan, Z., 2006. Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc Natl Acad Sci U S A. 103, 18338-18343.CrossRefPubMedGoogle Scholar
  36. Lorenzon, N. M. and Foehring, R. C., 1992. Relationship between repetitive firing and after-hyperpolarizations in human neocortical neurons. J Neurophysiol. 67, 350-363.PubMedGoogle Scholar
  37. Lorenzon, N. M. and Foehring, R. C., 1993. The ontogeny of repetitive firing and its modula-tion by norepinephrine in rat neocortical neurons. Brain Res Dev Brain Res. 73, 213-223.CrossRefPubMedGoogle Scholar
  38. McCormick, D. A., 1992. Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol. 9, 212-223.PubMedCrossRefGoogle Scholar
  39. McCormick, D. A. and Wang, Z., 1991. Serotonin and noradrenaline excite GABAergic neu-rones of the guinea-pig and cat nucleus reticularis thalami. J Physiol. 442, 235-255.PubMedGoogle Scholar
  40. Morilak, D. A., Fornal, C. A. and Jacobs, B. L., 1987. Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. III. Glucoregulatory challenge. Brain Res. 422, 32-39.CrossRefPubMedGoogle Scholar
  41. Mouradian, R. D., Sessler, F. M. and Waterhouse, B. D., 1991. Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: evidence for mediation by an alpha 1 receptor-linked second messenger pathway. Brain Res. 546, 83-95.CrossRefPubMedGoogle Scholar
  42. Neuman, R. S., 1986. Suppression of penicillin-induced focal epileptiform activity by locus ceruleus stimulation: mediation by an alpha 1-adrenoceptor. Epilepsia. 27, 359-366.CrossRefPubMedGoogle Scholar
  43. Pacak, K., Palkovits, M., Kopin, I. J. and Goldstein, D. S., 1995. Stress-induced norepineph-rine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol.16, 89-150.CrossRefPubMedGoogle Scholar
  44. Pralong, E. and Magistretti, P. J., 1994. Noradrenaline reduces synaptic responses in normal and tottering mouse entorhinal cortex via alpha 2 receptors. Neurosci Lett. 179, 145-148.CrossRefPubMedGoogle Scholar
  45. Ramos, B. P. and Arnsten, A. F., 2007. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther. 2007, 113(3):523-36.CrossRefPubMedGoogle Scholar
  46. Rey E, Hernandez-iaz FJ, Abreu P, Alonso R, Tabares L. (2001) Dopamine induces intracellular Ca2 + signals mediated by alpha1B- adrenoceptors in rat pineal cells. Eur J Pharmacol 26; 430(1):9-17.CrossRefGoogle Scholar
  47. Sarter, M., Hasselmo, M. E., Bruno, J. P. and Givens, B., 2005. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev. 48, 98-111.CrossRefPubMedGoogle Scholar
  48. Schwartz, T. H., Rabinowitz, D., Unni, V., Kumar, V. S., Smetters, D. K., Tsiola, A. and Yuste, R., 1998. Networks of coactive neurons in developing layer 1. Neuron. 20, 541-552.CrossRefPubMedGoogle Scholar
  49. Stanton, P. K., Mody, I., Zigmond, D., Sejnowski, T. and Heinemann, U., 1992. Noradrener-gic modulation of excitability in acute and chronic model epilepsies. Epilepsy Res Suppl. 8, 321-334.PubMedGoogle Scholar
  50. Swaminath, G., Xiang, Y., Lee, T. W., Steenhuis, J., Parnot, C. and Kobilka, B. K., 2004. Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermedi-ate conformational states. J Biol Chem. 279, 686-691.CrossRefPubMedGoogle Scholar
  51. Timmons, S. D., Geisert, E., Stewart, A. E., Lorenzon, N. M. and Foehring, R. C., 2004. alpha2-Adrenergic receptor-mediated modulation of calcium current in neocortical pyramidal neurons. Brain Res. 1014, 184-196.CrossRefPubMedGoogle Scholar
  52. Valentino, R. J., Foote, S. L. and Page, M. E., 1993. The locus coeruleus as a site for integrat-ing corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci. 697, 173-188.CrossRefPubMedGoogle Scholar
  53. Waterhouse, B. D. and Woodward, D. J., 1980. Interaction of norepinephrine with cerebrocor-tical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp Neurol. 67, 11-34.CrossRefPubMedGoogle Scholar
  54. Waterhouse, B. D., Moises, H. C. and Woodward, D. J., 1980. Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neuro-transmitters. Exp Neurol. 69, 30-49.CrossRefPubMedGoogle Scholar
  55. Waterhouse, B. D., Moises, H. C., Yeh, H. H., Geller, H. M. and Woodward, D. J., 1984. Comparison of norepinephrine- and benzodiazepine-induced augmentation of Purkinje cell responses to gamma-aminobutyric acid (GABA). J Pharmacol Exp Ther. 228, 257-267.PubMedGoogle Scholar
  56. Waterhouse, B. D., Sessler, F. M., Cheng, J. T., Woodward, D. J., Azizi, S. A. and Moises, H. C., 1988. New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Res Bull. 21, 425-432.CrossRefPubMedGoogle Scholar
  57. Xiang, Z., Huguenard, J. R. and Prince, D. A., 1998. Cholinergic switching within neocortical inhibitory networks. Science. 281, 985-988.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marco Atzori
    • 1
  • Humberto Salgado
    • 1
  • Kuei-Yuan Tseng
    • 2
  1. 1.School for Behavioral and Brain SciencesUniversity of TexasDallasUSA
  2. 2.Department of Cellular & Molecular PharmacologyRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations