Polyamines in Bacteria: Pleiotropic Effects yet Specific Mechanisms

  • Brian W. Wortham
  • Marcos A. Oliveira
  • Chandra N. Patel
Part of the Advances In Experimental Medicine And Biology book series (AEMB, volume 603)

Extensive data in a wide range of organisms point to the importance of polyamine homeostasis for growth. The two most common polyamines found in bacteria are putrescine and spermidine. The investigation of polyamine function in bacteria has revealed that they are involved in a number of functions other than growth, which include incorporation into the cell wall and biosynthesis of siderophores. They are also important in acid resistance and can act as a free radical ion scavenger. More recently it has been suggested that polyamines play a potential role in signaling cellular differentiation in Proteus mirabilis. Polyamines have also been shown to be essential in biofilm formation in Yersinia pestis. The pleiotropic nature of polyamines has made their investigation difficult, particularly in discerning any specific effect from more global growth effects. Here we describe key developments in the investigation of the function of polyamines in bacteria that have revealed new roles for polyamines distinct from growth. We describe the bacterial genes necessary for biosynthesis and transport, with a focus on Y. pestis. Finally we review a novel role for polyamines in the regulation of biofilm development in Y. pestis and provide evidence that the investigation of polyamines in Y. pestis may provide a model for understanding the mechanism through which polyamines regulate biofilm formation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.7 References

  1. Balasundaram, D. and Tyagi, A.K. (1991) Polyamine--DNA nexus: structural ramifications and biological implications. Mol. Cell Biochem. 100, 129-140.CrossRefPubMedGoogle Scholar
  2. Brickman, T.J. and Armstrong, S.K. (1996) The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin. J. Bacteriol. 178, 54-60.PubMedGoogle Scholar
  3. Chattopadhyay, M.K., Tabor, C.W. and Tabor, H. (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. PNAS USA 100, 2261-2265.CrossRefPubMedGoogle Scholar
  4. Field, A.M., Rowatt, E. and Williams, R.J. (1989) The interaction of cations with lipopolysaccharide from Escherichia coli C as shown by measurement of binding constants and aggregation reactions. Biochem. J. 263, 695-702.PubMedGoogle Scholar
  5. Foster, J.W. (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2, 898-907.CrossRefPubMedGoogle Scholar
  6. Griffiths, G.L., Sigel, S.P., Payne, S.M. and Neilands, J.B. (1984) Vibriobactin, a siderophore from Vibrio cholerae. J. Biol. Chem. 259, 383-385.PubMedGoogle Scholar
  7. Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M. and Casero, R.A., (1998) The natural polyamine spermine functions directly as a free radical scavenger. PNAS USA 95, 11140-11145.CrossRefPubMedGoogle Scholar
  8. Hackert, M.L., Carroll, D.W., Davidson, L., Kim, S.O., Momany, C., Vaaler, G.L. and Zhang, L. (1994) Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a. J. Bacteriol. 176, 7391-7394.PubMedGoogle Scholar
  9. Hamana, K., Saito, T., Okada, M., Sakamoto, A. and Hosoya, R. (2002) Covalently linked polyamines in the cell wall peptidoglycan of Selenomonas, Anaeromusa, Dendrosporobacter, Acidaminococcus and Anaerovibrio belonging to the Sporomusa subbranch. J. Gen. Appl. Microbiol. 48, 177-180.CrossRefPubMedGoogle Scholar
  10. Hirao, T., Sato, M., Shirahata, A. and Kamio, Y. (2000) Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica. J. Bacteriol. 182, 1154-1157.CrossRefPubMedGoogle Scholar
  11. Igarashi, K., Ito, K. and Kashiwagi, K. (2001) Polyamine uptake systems in Escherichia coli. Res. Microbiol. 152, 271-278.CrossRefPubMedGoogle Scholar
  12. Igarashi, K. and Kashiwagi, K. (1999) Polyamine transport in bacteria and yeast. Biochem. J. 344, 633-642.CrossRefPubMedGoogle Scholar
  13. Iyer, R., Williams, C. and Miller, C. (2003) Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 185, 6556-6561.CrossRefPubMedGoogle Scholar
  14. Jung, I.L., Oh, T.J. and Kim, I.G. (2003) Abnormal growth of polyamine-deficient Escherichia coli mutant is partially caused by oxidative stress-induced damage. Arch. Biochem. Biophys. 418, 125-132.CrossRefPubMedGoogle Scholar
  15. Kamio, Y. (1987) Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J. Bacteriol. 169, 4837-4840.PubMedGoogle Scholar
  16. Kamio, Y. and Nakamura, K. (1987) Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J. Bacteriol. 169, 2881-2884.PubMedGoogle Scholar
  17. Kamio, Y., Pösö, H., Terawaki, Y. and Paulin, L. (1986) Cadaverine covalently linked to a peptidoglycan is an essential constituent of the peptidoglycan necessary for the normal growth in Selenomonas ruminantium. J. Biol. Chem. 261, 6585-6589.PubMedGoogle Scholar
  18. Karatan, E., Duncan, T.R. and Watnick, P.I. (2005) NspS, a Predicted Polyamine Sensor, Mediates Activation of Vibrio cholerae Biofilm Formation by Norspermidine. J. Bacteriol. 187, 7434-7443.CrossRefPubMedGoogle Scholar
  19. Kashiwagi, K., Kobayashi, H. and Igarashi, K. (1986) Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli. J. Bacteriol. 165, 972-977.PubMedGoogle Scholar
  20. Kashiwagi, K., Shibuya, S., Tomitori, H., Kuraishi, A. and Igarashi, K. (1997) Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J. Biol. Chem. 272, 6318-6323.CrossRefPubMedGoogle Scholar
  21. Koski, P. and Vaara, M. (1991) Polyamines as constituents of the outer membranes of Escherichia coli and Salmonella typhimurium. J. Bacteriol. 173, 3695-3699.PubMedGoogle Scholar
  22. Lin, J., Smith, M.P., Chapin, K.C., Baik, H.S., Bennett, G.N. and Foster, J.W. (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 62, 3094-3100.PubMedGoogle Scholar
  23. Lindemose, S., Nielsen, P.E. and Mollegaard, N.E. (2005) Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Res. 33, 1790-1803.CrossRefPubMedGoogle Scholar
  24. Litwin, C.M. and Calderwood, S.B. (1993) Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 6, 137-149.PubMedGoogle Scholar
  25. Merrell, D.S. and Camilli, A. (2000) Regulation of Vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J. Bacteriol. 182, 5342-5350.CrossRefPubMedGoogle Scholar
  26. Miyamoto, S., Kashiwagi, K., Ito, K., Watanabe, S. and Igarashi, K. (1993) Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch. Biochem. Biophys. 300, 63-68.CrossRefPubMedGoogle Scholar
  27. Mushegian, A.R. and Koonin, E.V. (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. PNAS 93, 10268-10273.CrossRefPubMedGoogle Scholar
  28. Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1-32.PubMedGoogle Scholar
  29. Pastre, D., Pietrement, O., Landousy, F., Hamon, L., Sorel, I., David, M.O., Delain, E., Zozime, A. and Le Cam, E. (2006) A new approach to DNA bending by polyamines and its implication in DNA condensation. Eur. Biophys. J. 35, 214-223.CrossRefPubMedGoogle Scholar
  30. Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D. and Oliveira, M.A. (2006) Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355-2363.CrossRefPubMedGoogle Scholar
  31. Polissi, A., Pontiggia, A., Feger, G., Altieri, M., Mottl, H., Ferrari, L. and Simon, D. (1998) Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620-5629.PubMedGoogle Scholar
  32. Richard, H. and Foster, J.W. (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186, 6032-6041.CrossRefPubMedGoogle Scholar
  33. Samartzidou, H., Mehrazin, M., Xu, Z., Benedik, M.J. and Delcour, A.H. (2003) Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J. Bacteriol. 185, 13-19.CrossRefPubMedGoogle Scholar
  34. Sandmeier, E., Hale, T.I. and Christen, P. (1994) Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases. Eur. J. Biochem. 221, 997-1002.CrossRefPubMedGoogle Scholar
  35. Souzu, H. (1986) Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. II. Stabilization of the membranes by polyamines. Biochim. Biophys. Acta 861, 361-367.CrossRefPubMedGoogle Scholar
  36. Stevenson, L.G. and Rather, P.N. (2006) A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J. Bacteriol. 188, 7830-7839.CrossRefPubMedGoogle Scholar
  37. Sturgill, G. and Rather, P.N. (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 51, 437-446.CrossRefPubMedGoogle Scholar
  38. Tabor, C.W. and Tabor, H. (1985) Polyamines in microorganisms. Microbiol. Rev. 49, 81-99.PubMedGoogle Scholar
  39. Takatsuka, Y. and Kamio, Y. (2004) Molecular dissection of the Selenomonas ruminantium cell envelope and lysine decarboxylase involved in the biosynthesis of a polyamine covalently linked to the cell wall peptidoglycan layer. Biosci. Biotechnol. Biochem. 68, 1-19.CrossRefPubMedGoogle Scholar
  40. Terui, Y., Ohnuma, M., Hiraga, K., Kawashima, E. and Oshima, T. (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem. J. 388, 427-433.CrossRefPubMedGoogle Scholar
  41. Tkachenko, A., Nesterova, L. and Pshenichnov, M. (2001) The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176, 155-157.CrossRefPubMedGoogle Scholar
  42. Vassylyev, D.G., Tomitori, H., Kashiwagi, K., Morikawa, K. and Igarashi, K. (1998) Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity. J. Biol. Chem. 273, 17604-17609.CrossRefPubMedGoogle Scholar
  43. Wallace, H.M., Fraser, A.V. and Hughes, A. (2003) A perspective of polyamine metabolism. Biochem. J. 376, 1-14.CrossRefPubMedGoogle Scholar
  44. Ware, D., Jiang, Y., Lin, W. and Swiatlo, E. (2006) Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect. Immun. 74, 352-361.CrossRefPubMedGoogle Scholar
  45. Yoshida, M., Kashiwagi, K., Shigemasa, A., Taniguchi, S., Yamamoto, K., Makinoshima, H., Ishihama, A. and Igarashi, K. (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J. Biol. Chem. 279, 46008-46013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Brian W. Wortham
    • 1
  • Marcos A. Oliveira
    • 2
  • Chandra N. Patel
    • 3
  1. 1.Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonUSA
  2. 2.Department of Pharmaceutical Sciences, Feik School of PharmacyUniversity of the Incarnate WordSan AntonioUSA
  3. 3.Hematology/CardiologyBayer HealthCare LLCBerkeleyUSA

Personalised recommendations