Rationale for Glutamatergic and Cholinergic Approaches for the Treatment of Alzheimer’s Disease

  • Paul T. Francis
  • Sara L. Kirvell
Conference paper
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Glial Fibrillary Acidic Protein Cholinesterase Inhibitor Synaptic Cleft Lewy Body Dementia Neurochemical Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanhope KJ, Mclenachan AP, Dourish CT. Dissociation between cognitive and motor/motivational deficits in the delayed matching to position test: effects of scopolamine, 8-OH-DPAT and EAA antagonists. Psychopharmacology. 1995;122:268–280.PubMedCrossRefGoogle Scholar
  2. 2.
    Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 1999;66:137–147.PubMedGoogle Scholar
  3. 3.
    Davis KL, Mohs RC, Marin D, et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999;281:1401–1406.PubMedCrossRefGoogle Scholar
  4. 4.
    DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–155.PubMedCrossRefGoogle Scholar
  5. 5.
    Court J, Martin-Ruiz C, Piggott M, et al. Nicotinic receptor abnormalities in Alzheimer's disease. Biol Psychiatry 2001;49:175–184.PubMedCrossRefGoogle Scholar
  6. 6.
    Lai MK, Lai OF, Keene J, et al. Psychosis of Alzheimer's disease is associated with elevated muscarinic M2 binding in the cortex. Neurology 2001;57:805–811.PubMedGoogle Scholar
  7. 7.
    Warpman U, Alafuzoff I, Nordberg A. Coupling of muscarinic receptors to GTP proteins in postmortem human brain: alterations in Alzheimer's disease. Neurosci Lett 1993;150:39–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Perry EK, Morris CM, Court JA, et al. Alteration in nicotine binding sites in Parkinson's disease, Lewy body dementia and Alzheimer's: possible index of early neuropathology. Neuroscience 1995;64:385–395.PubMedCrossRefGoogle Scholar
  9. 9.
    Francis PT, Sims NR, Procter AW, Bowen DM. Cortical pyramidal neurone loss may cause glutamatergic hypoactivity and cognitive impairment in Alzheimer's disease: investigative and therapeutic perspectives. J Neurochem 1993;60:1589–1604.PubMedCrossRefGoogle Scholar
  10. 10.
    Dijk SN, Francis PT, Stratmann GC, Bowen DM. Cholinomimetics increase glutamate outflow by an action on the corticostriatal pathway: implications for Alzheimer's disease. J Neurochem 1995;65:2165–2169.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer's disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging 2004;21:453–478.PubMedCrossRefGoogle Scholar
  12. 12.
    Gauthier S, Feldman H, Hecker J, et al. Efficacy of donepezil on behavioral symptoms in patients with moderate to severe Alzheimer's disease. Int Psychogeriatr 2002;14:389–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Minger SL, Esiri MM, McDonald B, et al. Cholinergic deficits contribute to behavioural disturbance in patients with dementia. Neurology 2000;55:1460–1467.PubMedGoogle Scholar
  14. 14.
    Fonnum F. Glutamate: a neurotransmitter in mammalian brain. J Neurochem 1984;42:1–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278:412–419.PubMedCrossRefGoogle Scholar
  16. 16.
    Greenamyre JT, Maragos WF, Albin RL, et al. Glutamate transmission and excitotxicity in Alzheimer's disease. Prog Neuropsychopharmacol 1988;12:421–430.CrossRefGoogle Scholar
  17. 17.
    Greenamyre JT, Penney JB, Damato CJ, Young AB. Alterations in L-glutamate binding in Alzheimer's and Huntingdon's diseases. Science 1985;227:1496–1499.PubMedCrossRefGoogle Scholar
  18. 18.
    Greenamyre JT, Penney JB, D'Amato CJ, Young AB. Dementia of the Alzheimer's type: changes in hippocampal L-[3H]glutamate binding. J Neurochem 1987;48:543–551.PubMedCrossRefGoogle Scholar
  19. 19.
    Procter AW, Wong EH, Stratmann GC, et al. Reduced glycine stimulation of [3H]MK-801 binding in Alzheimer's disease. J Neurochem 1989;53:698–704.PubMedCrossRefGoogle Scholar
  20. 20.
    Najlerahim A, Bowen DM. Regional weight loss of the cerebral cortex and some subcortical nuclei in senile dementia of the Alzheimer type. Acta Neuropathol (Berl) 1988;75:509–512.CrossRefGoogle Scholar
  21. 21.
    Najlerahim A, Bowen DM. Biochemical measurements in Alzheimer's disease reveal a necessity for improved neuroimaging techniques to study metabolism. Biochem J 1988;251:305–308.PubMedGoogle Scholar
  22. 22.
    Procter AW, Francis PT, Holmes C, et al. APP isoforms show correlations with neurones but not with glia in brains of demented subjects. Acta Neuropathol (Berl) 1994;88:545–552.CrossRefGoogle Scholar
  23. 23.
    Westphalen RI, Scott HL, Dodd PR. Synaptic vesicle transport and synaptic membrane transporter sites in excitatory amino acid nerve terminals in Alzheimer disease. J Neural Transm 2003;110:1013–1027.PubMedCrossRefGoogle Scholar
  24. 24.
    Procter AW, Palmer AM, Francis PT, et al. Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. J Neurochem 1988;50:790–802.PubMedCrossRefGoogle Scholar
  25. 25.
    Keller JN, Mark RJ, Bruce AJ, et al. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 1997;80:685–696.PubMedCrossRefGoogle Scholar
  26. 26.
    Danysz W, Parsons CG, Quack G. NMDA channel blockers: memantine and amino-aklylcyclohexanes: in vivo characterization. Amino Acids 2000;19:167–172.PubMedCrossRefGoogle Scholar
  27. 27.
    Francis PT. Glutamatergic systems in Alzheimer's disease. Int J Geriat Psychiatry 2003;18:S15-S21.CrossRefGoogle Scholar
  28. 28.
    Chessell IP, Francis PT, Pangalos MN, et al. Localisation of muscarinic (m1) and other neurotransmitter receptors on corticofugal-projecting pyramidal neurones. Brain Res 1993;632:86–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Chessell IP, Humphrey PPA. Nicotinic and muscarinic receptor-evoked depolarisations recorded from a novel cortical brain slice preparation. Neuropharmacology 1995;34:1289–1296.PubMedCrossRefGoogle Scholar
  30. 30.
    Chessell IP, Pearson RCA, Heath PR, et al. Selective loss of cholinergic receptors following unilateral intracortical injection of volkensin. Exp Neurol 1997;147:183–191.PubMedCrossRefGoogle Scholar
  31. 31.
    Turrini P, Casu MA, Wong TP, et al. Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 2001;105:277–285.PubMedCrossRefGoogle Scholar
  32. 32.
    Francis PT, Pearson RCA, Lowe SL, et al. The dementia of Alzheimer's disease: an update. J Neurol Neurosurg Psychiatry 1987;50:242–243.PubMedCrossRefGoogle Scholar
  33. 33.
    Zilles K, Werner L, Qu M, et al. Quantitative autoradiography of 11 different transmitter binding sites in the basal forebrain region of the rat: evidence of heterogeneity in distribution patterns. Neuroscience 1991;42:473–481.PubMedCrossRefGoogle Scholar
  34. 34.
    Martin LJ, Blackstone CD, Levey AI, et al. Cellular localizations of AMPA glutamate receptors within the basal forebrain magnocellular complex of rat and monkey. J Neurosci 1993;13:2249–2263.PubMedGoogle Scholar
  35. 35.
    Ikonomovic MD, Armstrong DM. Distribution of AMPA receptor subunits in the nucleus basalis of Meynert in aged humans: implications for selective neuronal degeneration. Brain Res 1996;716:229–232.PubMedCrossRefGoogle Scholar
  36. 36.
    Ikonomovic MD, Nocera R, Mizukami K, Armstrong DM. Age-related loss of the AMPA receptor subunits GluR2/3 in the human nucleus basalis of Meynert. Exp Neurol 2000;166:363–375.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul T. Francis
    • 1
  • Sara L. Kirvell
  1. 1.Wolfson Centre for Age-Related DiseasesKing’s College LondonUK

Personalised recommendations