Cellular Membranes as Targets in Amyloid Oligomer Disease Pathogenesis

  • Erene W. Mina
  • Charles G. Glabe
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Alzheimer Disease Amyloid Peptide Islet Amyloid Polypeptide Amyloid Oligomer Protein Misfolding Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kirschner DA, Abraham C, Selkoe DJ. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation [erratum]. Proc Natl Acad Sci U S A 1986;83:503–507.PubMedCrossRefGoogle Scholar
  2. LeVine HD. Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 1993;2(3):404–410.PubMedCrossRefGoogle Scholar
  3. Eanes ED, Glenner GG. X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 1968;16:673–677.PubMedGoogle Scholar
  4. Harper JD, Wong SS, Lieber CM, Lansbury PT. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol 1997;4(2):119–125.PubMedCrossRefGoogle Scholar
  5. Lashuel HA, Hartley D, Petre BM, et al. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 2002;418(6895):291.PubMedCrossRefGoogle Scholar
  6. Anguiano M, Nowak RJ, Lansbury PT Jr. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 2002;41(38):11338–11343.PubMedCrossRefGoogle Scholar
  7. Walsh DM, Lomakin A, Benedek GB, et al. Amyloid beta-protein fibrillogenesis: detection of a protofibrillar intermediate. J Biol Chem 1997;272(35):22364–22372.PubMedCrossRefGoogle Scholar
  8. Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 1998;95(11):6448–6453.PubMedCrossRefGoogle Scholar
  9. Lomakin A, Teplow DB, Kirschner DA, Benedek GB. Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci U S A 1997;94(15):7942–7947.PubMedCrossRefGoogle Scholar
  10. Soreghan B, Kosmoski J, Glabe C. Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. J Biol Chem 1994;269(46):28551–28554.PubMedGoogle Scholar
  11. Terry R. The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 1996;55(10):1023–1025.PubMedGoogle Scholar
  12. Hsia AY, Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 1999;96(6):3228–3233.PubMedCrossRefGoogle Scholar
  13. Westerman MA, Cooper-Blacketer D, Mariash A, et al. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 2002;22(5):1858–1867.PubMedGoogle Scholar
  14. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003;26(1):267–298.PubMedCrossRefGoogle Scholar
  15. Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002;416(6880):507–511.PubMedCrossRefGoogle Scholar
  16. Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300(5618):486–489.PubMedCrossRefGoogle Scholar
  17. Mattson MP, Cheng B, Davis D, et al. Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992;12:376–389.PubMedGoogle Scholar
  18. Mattson MP. Calcium and neuronal injury in Alzheimer's disease: contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Ann N Y Acad Sci 1994;747:50–76.PubMedCrossRefGoogle Scholar
  19. Arispe N, Pollard HB, Rojas E. Beta-amyloid Ca(2+)-channel hypothesis for neuronal death in Alzheimer disease. Mol Cell Biochem 1994;140:119–125.PubMedCrossRefGoogle Scholar
  20. Arispe N, Rojas E, Pollard HB. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 1993;90:567–571.PubMedCrossRefGoogle Scholar
  21. Mirzabekov T, Lin MC, Yuan WL, et al. Channel formation in planar lipid bilayers by a neurotoxic fragment of the beta-amyloid peptide. Biochem Biophys Res Commun 1994;202:1142–1148.PubMedCrossRefGoogle Scholar
  22. Hirakura Y, Yiu WW, Yamamoto A, Kagan BL. Amyloid peptide channels: blockade by zinc and inhibition by Congo red (amyloid channel block). Amyloid 2000;7(3):194–199.PubMedCrossRefGoogle Scholar
  23. Mirzabekov TA, Lin M-C, Kagan BL. Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 1996;271(4):1988–1992.PubMedCrossRefGoogle Scholar
  24. Kagan BL, Azimov RH, Azimova R. Amyloid peptide channels. J Membr Biol 2004;202:1–10.PubMedCrossRefGoogle Scholar
  25. Kayed R, Sokolov Y, Edmonds B, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004;279(45):46363–46366.PubMedCrossRefGoogle Scholar
  26. Green JD, Kreplak L, Goldsbury C, et al. Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J Mol Biol 2004;342(3):877–887.PubMedCrossRefGoogle Scholar
  27. Mattson MP. Pathways towards and away from Alzheimer's disease. 2004;430(7000):631–639.Google Scholar
  28. Kawahara M, Kuroda Y, Arispe N, Rojas E. Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J Biol Chem 2000;275(19):14077–14083.PubMedCrossRefGoogle Scholar
  29. Pierrot N, Ghisdal P, Caumont A-S, Octave J-N. Intraneuronal amyloid-1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem 2004;88(5):1140–1150.PubMedCrossRefGoogle Scholar
  30. LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002;3(11):862–872.PubMedCrossRefGoogle Scholar
  31. Bucciantini M, Calloni G, Chiti F, et al. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem 2004;279(30):31374–31382.PubMedCrossRefGoogle Scholar
  32. Schubert D, Behl C, Lesley R, et al. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad Sci U S A 1995;92(6):1989–1993.PubMedCrossRefGoogle Scholar
  33. Blanchard BJ, Chen A, Rozeboom LM, et al. Inaugural article: efficient reversal of Alzheimer's disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci U S A 2004;101(40):14326–14332.PubMedCrossRefGoogle Scholar
  34. Guo Q, Furukawa K, Sopher BL, et al. Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. Neuroreport 1996;8(1):379–383.PubMedCrossRefGoogle Scholar
  35. Kagan BL, Hirakura Y, Azimov R, et al. The channel hypothesis of Alzheimer's disease: current status. Peptides 2002;23(7):1311–1315.PubMedCrossRefGoogle Scholar
  36. Demuro A, Mina E, Kayed R, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005;280(17):17294–17300.PubMedCrossRefGoogle Scholar
  37. Relini A, Torrassa S, Rolandi R, et al. Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J Mol Biol 2004;338(5):943–957.PubMedCrossRefGoogle Scholar
  38. Janson J, Ashley RH, Harrison D, et al. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999;48(3):491–498.PubMedCrossRefGoogle Scholar
  39. Mattson MP. Degenerative and protective signaling mechanisms in the neurofibrillary pathology of AD. Neurobiol Aging 1995;16:447–457; discussion 458–463.PubMedCrossRefGoogle Scholar
  40. Saitoh T, Horsburgh K, Masliah E. Hyperactivation of signal transduction systems in Alzheimer's disease. Ann N Y Acad Sci 1993;695:34–41.PubMedCrossRefGoogle Scholar
  41. Shoffner JM. Oxidative phosphorylation defects and Alzheimer's disease. Neurogenetics 1997;1(1):13–19.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Erene W. Mina
    • 1
  • Charles G. Glabe
  1. 1.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations