Up-regulation of the α-Secretase Pathway

  • Falk Fahrenholz
  • Claudia Prinzen
  • Rolf Postina
  • Elżbieta Kojro
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Mild Cognitive Impairment Amyloid Precursor Protein Alzheimer Disease Patient PAC1 Receptor Alzheimer Disease Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of α-secretases. Subcell Biochem 2005;38:105–127.PubMedCrossRefGoogle Scholar
  2. Caille I, Allinquant B, Dupont E, et al. Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004;131:2173–2181.PubMedCrossRefGoogle Scholar
  3. Lammich S, Kojro E, Postina R, Gilbert S, et al. Constitutive and regulated α-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999;96:3922–3927.PubMedCrossRefGoogle Scholar
  4. Anders A, Gilbert S, Garten W, et al. Regulation of the α-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 2001;15:1837–1839.PubMedGoogle Scholar
  5. Moechars D, Dewachter I, Lorent K, et al. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 1999;274:6483–6492.PubMedCrossRefGoogle Scholar
  6. Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004;113:1456–1464.PubMedCrossRefGoogle Scholar
  7. Nitsch RM, Deng M, Tennis M, et al. The selective muscarinic M1 agonist AF102B decreases levels of total Abeta in cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol 2000;48:913–918.PubMedCrossRefGoogle Scholar
  8. Fisher A, Caccamo A, Oddo S, et al. M1 muscarinic agonists attenuate the pathology and restore cognition in animal models for Alzheimer's disease (abstract). AD/PD Conferente, 2005.Google Scholar
  9. Zimmermann M, Gardoni F, Marcello E, et al. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem 2004;90:1489–1499.PubMedCrossRefGoogle Scholar
  10. Etcheberrigaray R, Tan M, Dewachter I, et al. Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 2004;101:11141–11146.PubMedCrossRefGoogle Scholar
  11. Vaudry D, Gonzalez BJ, Basille M, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 2000;52:269–324.PubMedGoogle Scholar
  12. Sacchetti B, Lorenzini CA, Baldi E, et al. Pituitary adenylate cyclase-activating polypeptide hormone (PACAP) at very low dosages improves memory in the rat. Neurobiol Learn Mem 2001;76:1–6.PubMedCrossRefGoogle Scholar
  13. Dogrukol-Ak D, Tore F, Tuncel N. Passage of VIP/PACAP/secretin family across the blood-brain barrier: therapeutic effects. Curr Pharm Des 2004;10:1325–1340.PubMedCrossRefGoogle Scholar
  14. Prinzen C, Muller U, Endres K, et al. Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J 2005;19:1522–1524.PubMedGoogle Scholar
  15. Howard L, Lu X, Mitchell S, et al. Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem J 1996;317(Pt 1):45–50.PubMedGoogle Scholar
  16. Yavari R, Adida C, Bray-Ward P, et al. Human metalloprotease-disintegrin Kuzbanian regulates sympathoadrenal cell fate in development and neoplasia. Hum Mol Genet 1998;7:1161–1167.PubMedCrossRefGoogle Scholar
  17. Rinaldi P, Polidori MC, Metastasio A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging 2003;24:915–919.PubMedCrossRefGoogle Scholar
  18. Chiang MY, Misner D, Kempermann G, et al. An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 1998;21:1353–1361.PubMedCrossRefGoogle Scholar
  19. Misner D, Jacobs S, Shimizu Y, et al. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticitá. Proc Natl Acad Sci U S A 2001;98:11714–11719.PubMedCrossRefGoogle Scholar
  20. Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol 1999;38:65–81.PubMedCrossRefGoogle Scholar
  21. Goodman AB, Pardee AB. Evidence for defective retinoid transport and function in late onset Alzheimer's disease. Proc Natl Acad Sci U S A 2003;100:2901–2905.PubMedCrossRefGoogle Scholar
  22. Stein TD, Anders NJ, DeCarli C, et al. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 2004; 24:7707–7717.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Falk Fahrenholz
    • 1
  • Claudia Prinzen
  • Rolf Postina
  • Elżbieta Kojro
  1. 1.Institute of BiochemistryUniversity of Mainz55099 MainzGermany

Personalised recommendations