Neuroprotective Effects of Trophic Factors and Natural Products: Involvement of Multiple Intracellular Kinases

  • Stéphane Bastianetto
  • Wen-Hua Zheng
  • Yingshan Han
  • Lixia Gan
  • Rémi Quirion
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Nerve Growth Factor Neuroprotective Effect Trophic Factor Epigallocatechin Gallate Ginkgo Biloba Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Selkoe DJ. The molecular pathology of Alzheimer's disease. Neuron 1991;6:487.PubMedCrossRefGoogle Scholar
  2. 2.
    Dore S, Kar S, Quirion R. Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci 1997;20:326.PubMedCrossRefGoogle Scholar
  3. 3.
    Zheng WH, Quirion R. Comparative signalling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem 2004;89:844.PubMedCrossRefGoogle Scholar
  4. 4.
    Zheng WH, Kar S, Quirion R. Insulin-like growth factor-1-induced phosphorylation of the forkhead family transcription factor FKHRL1 is mediated by Akt kinase in PC12 cells. J Biol Chem 2000;275:39152.PubMedCrossRefGoogle Scholar
  5. 5.
    Zheng WH, Kar S, Quirion R. Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons. Mol Pharmacol 2002;62:225.PubMedCrossRefGoogle Scholar
  6. 6.
    Zheng WH, Kar S, Quirion R. FKHRL1 and its homologs are new targets of nerve growth factor Trk receptor signaling. J Neurochem 2002;80:1049.PubMedCrossRefGoogle Scholar
  7. 7.
    Bastianetto S, Quirion R. Natural antioxidants and neurodegenerative diseases. Front Biosci 2004;9:3447.PubMedCrossRefGoogle Scholar
  8. 8.
    Moosmann B, Behl C. The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci U S A 1999,96:8867.PubMedCrossRefGoogle Scholar
  9. 9.
    Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 2000;131:711.PubMedCrossRefGoogle Scholar
  10. 10.
    Bastianetto S, Quirion, R. Resveratrol and red wine constituents: evaluation of their neuroprotective properties. Pharmacol News 2001;8:33–38.Google Scholar
  11. 11.
    Nagai K, Jiang MH, Hada J, et al. (–)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 2002;956:319.PubMedCrossRefGoogle Scholar
  12. 12.
    Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (–)-epigallocatechin-3-gallate. FASEB J 2003;17:952.PubMedGoogle Scholar
  13. 13.
    Han YS, Zheng WH, Bastianetto S, et al. Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 2004;141:997.PubMedCrossRefGoogle Scholar
  14. 14.
    Mandel S, Weinreb O, Amit T, Youdim MB. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (–)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 2004;88:1555.PubMedCrossRefGoogle Scholar
  15. 15.
    Mandel SA, Avramovich-Tirosh Y, Reznichenko L, et al. Multifunctional activities of green tea catechins in neuroprotection. Neurosignals 2005;14:46.PubMedCrossRefGoogle Scholar
  16. 16.
    Choi YB, Kim YI, Lee KS, et al. Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res 2004;1019:47.PubMedCrossRefGoogle Scholar
  17. 17.
    Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (–)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002;277:30574.PubMedCrossRefGoogle Scholar
  18. 18.
    Arden KC, Fox O. linking new signaling pathways. Mol Cell 2004;14:416.PubMedCrossRefGoogle Scholar
  19. 19.
    Gan L, Zheng WH, Chabot JG, et al. Nuclear/cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem 2005;93:1209.PubMedCrossRefGoogle Scholar
  20. 20.
    Pan T, Jankovic J, Le W. Potential therapeutic properties of green tea polyphenols in Parkinson's disease. Drugs Aging 2003;20:711.PubMedCrossRefGoogle Scholar
  21. 21.
    Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem 2004;15:506.PubMedCrossRefGoogle Scholar
  22. 22.
    Kanowski S, Hoerr R. Ginkgo biloba extract EGb 761 in dementia: intent-to-treat analyses of a 24-week, multi-center, double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry 2003;36:297.PubMedCrossRefGoogle Scholar
  23. 23.
    Klein WL. Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 2002;41:345.PubMedCrossRefGoogle Scholar
  24. 24.
    Del Peso L, Gonzalez-Garcia M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278:687.PubMedCrossRefGoogle Scholar
  25. 25.
    Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998;282:1318.PubMedCrossRefGoogle Scholar
  26. 26.
    Datta SR, Brunet A, Greenberg ME. , Cellular survival: a play in three Akts. Genes Dev 1999;13:2905.PubMedCrossRefGoogle Scholar
  27. 27.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489.PubMedCrossRefGoogle Scholar
  28. 28.
    Della Ragione F, Cucciolla V, Criniti V, et al. Antioxidants induce different phenotypes by a distinct modulation of signal transduction. FEBS Lett 2002;532:289.PubMedCrossRefGoogle Scholar
  29. 29.
    Nicolini G, Rigolio R, Scuteri A, et al. Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 2003;42:419.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stéphane Bastianetto
    • 1
  • Wen-Hua Zheng
  • Yingshan Han
  • Lixia Gan
  • Rémi Quirion
  1. 1.Department of PsychiatryDouglas Hospital Research Centre, McGill UniversityLaSalle, MontréalCanada

Personalised recommendations