Glycosaminoglycans and Analogs in Neurodegenerative Disorders

  • Lucilla Parnetti
  • Umberto Cornelli
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Heparan Sulfate Prion Protein Prion Disease Senile Plaque Amyloid Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goedert M, Spillantini MG, Davies SW. Filamentous nerve cell inclusions in neurodegenerative diseases. Curr Opin Neurobiol 1998;8:619–632.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaytor MD, Warren ST. Aberrant protein deposition and neurological disease. J Biol Chem 1999;274:37507–37510.PubMedCrossRefGoogle Scholar
  3. 3.
    Geula C, Wu CK, Saroff D, et al. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat Med 1998;4:827–831.PubMedCrossRefGoogle Scholar
  4. 4.
    Pérez M, Valpuesta JM, Medina M, et al. Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau–tau interaction. J Neurochem 1996;67:1183–1190.PubMedGoogle Scholar
  5. 5.
    Prusiner SB. Prion diseases and the BSE crisis. Science 1997;278:245–251.PubMedCrossRefGoogle Scholar
  6. 6.
    Thellung S, Florio T, Corsaro A, et al. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. Int J Dev Neurosci 2000;18:481–492.PubMedCrossRefGoogle Scholar
  7. 7.
    Jortikka MO, Parkkinen JJ, Inkinen RI, et al. The role of microtubules in the regulation of proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch Biochem Biophys 2000;374:172–180.PubMedCrossRefGoogle Scholar
  8. 8.
    Goedert M, Crowther RA, Jakes R, et al. Filamentous tau protein and alpha-synuclein deposits in neurodegenerative diseases. In: Iqbal K, Swaab DF, Winblad B, Wisniewski HM (eds) Alzheimer's Disease and Related Disorders. Chichester, UK: Wiley, 1999, pp 245–258.Google Scholar
  9. 9.
    Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand–receptor encounters. J Biol Chem 2000;275:29923–29926.PubMedCrossRefGoogle Scholar
  10. 10.
    Maccarana M, Casu B, Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 1993;268:23898–23905.PubMedGoogle Scholar
  11. 11.
    Lopez-Casillas F, Payne HM, Andres JL, Massague J. Betaglycan can act as a dual modulator of TGF-beta access to signalling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol 1994;124:557–568.PubMedCrossRefGoogle Scholar
  12. 12.
    Tatebayashi Y, Iqbal K, Grundke-Iqbal I. Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 1999;19:5245–5254.PubMedGoogle Scholar
  13. 13.
    artmann U, Maurer P. Proteoglycans in the nervous system–the quest for functional roles in vivo. Matrix Biol 2001;20:23–35.CrossRefGoogle Scholar
  14. 14.
    Gupta-Bansal R, Frederickson RC, Brunden KR. Proteoglycan-mediated inhibition of A beta proteolysis: a potential cause of senile plaque accumulation. J Biol Chem 1995;270:18666–18671.PubMedCrossRefGoogle Scholar
  15. 15.
    Cardin AD, Weintraub HJ. Molecular modeling of protein–glycosaminoglycan interactions. Arteriosclerosis 1989;9:21–32.PubMedGoogle Scholar
  16. 16.
    McLaurin J, Fraser PE. Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide–glycosaminoglycan interactions. Eur J Biochem 2000;267:6353–6361.PubMedCrossRefGoogle Scholar
  17. 17.
    Velazquez P, Cribbs DH, Poulos TL, Tenner AJ. Aspartate residue 7 in amyloid beta protein is critical for classical complement pathway activation: implications for Alzheimer's disease pathogenesis. Nat Med 1997;3:77–79.PubMedCrossRefGoogle Scholar
  18. 18.
    Bergamaschini L, Donarini C, Foddi C, et al. The region 1-11 of Alzheimer amyloid-β is critical for activation of contact-kinin system. Neurobiol Aging 2001;22;63–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Giulian D, Haverkamp LJ, Yu J, et al. The HHQK domain of beta-amyloid provides a structural basis for the immunopathology of Alzheimer's disease. J Biol Chem 1998;273;29719–29726.PubMedCrossRefGoogle Scholar
  20. 20.
    Watson DJ, Lander AD, Selkoe DJ. Heparin-binding properties of the amyloidogenic peptides Abeta and amylin: dependence on aggregation state and inhibition by congo red. J Biol Chem 1997;272:31617–31624.PubMedCrossRefGoogle Scholar
  21. 21.
    Fraser PE, Nguyen JT, Chin DT, Kirschner DA. Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: implications for amyloid fibril-proteoglycan interactions. J Neurochem 1992;59:1531–1540.PubMedCrossRefGoogle Scholar
  22. 22.
    Snow AD, Mar H, Nochlin D, et al. The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. Am J Pathol 1988;33:456–463.Google Scholar
  23. 23.
    De Witt DA, Silver J, Canning DR, Perry G. Chondroitin sulphate proteoglycans are associated with the lesions of Alzheimer's disease. Exp Neurol 1993;121:149–152.CrossRefGoogle Scholar
  24. 24.
    Woods AG, Cribbs DH, Whittemore ER, Cotman CW. Heparan sulfate and chondroitin sulfate glycosaminoglycan attenuate beta-amyloid (25–35) induced neurodegeneration in cultured hippocampal neurons. Brain Res 1995;697:53–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Pollack SJ, Sadler II, Hawtin SR, et al. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion. Neurosci Lett 1995;197:211–214.PubMedCrossRefGoogle Scholar
  26. 26.
    Nunomura APG, Pappolla MA, Friedland RP, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000; 59:1011–1017.PubMedGoogle Scholar
  27. 27.
    Klein WL, Krafft GA, Finch CE. Targeting small A beta oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci 2001;24:219–224.PubMedCrossRefGoogle Scholar
  28. 28.
    Brückner G, Hausen D, Härtig W, et al. Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease. Neuroscience 1999;92:791–805.PubMedCrossRefGoogle Scholar
  29. 29.
    Busciglio J, Lorenzo A, Yeh J, Yankner BA. β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 1995;14:879–888.PubMedCrossRefGoogle Scholar
  30. 30.
    Sturchler-Pierrat C, Abramowski D, Duke M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997;94:13287–13292.PubMedCrossRefGoogle Scholar
  31. 31.
    Yankner BA. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 1996;16:921–932.PubMedCrossRefGoogle Scholar
  32. 32.
    Small DH, Nurcombe V, Reed G, et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J Neurosci 1994;14:2117–2127.PubMedGoogle Scholar
  33. 33.
    Perry G, Kawai M, Tabaton M, et al. Neuropil threads of Alzheimer's disease show a marked alteration of the normal cytoskeleton. J Neurosci 1991;11:1748–1755.PubMedGoogle Scholar
  34. 34.
    Arrasate M, Pérez M, Valpuesta JM, Avila J. Role of glycosaminoglycans in determining the helicity of paired helical filaments. Am J Pathol 1997;151:1115–1122.PubMedGoogle Scholar
  35. 35.
    Arrasate M, Pérez M, Armas-Portela R, Avila J. Polymerization of tau peptides into fibrillar structures: the effect of FTDP-17 mutations. FEBS Lett 1999;446:199–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Forloni G, Angeretti N, Chiesa R, et al. Neurotoxicity of a prion protein fragment. Nature 1993;362:543–546.PubMedCrossRefGoogle Scholar
  37. 37.
    Pérez M, Wandosell F, Colaço C, Avila J. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochem J 1998;335:369–374.PubMedGoogle Scholar
  38. 38.
    Gabizon R, Meiner Z, Halimi M, Ben-Sasson SA. Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol 1993;157:319–325.PubMedCrossRefGoogle Scholar
  39. 39.
    Shyng SL, Lehmann S, Moulder KL, Harris DA. Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPc, in cultured cells. J Biol Chem 1995;270:30221–30229.PubMedCrossRefGoogle Scholar
  40. 40.
    Wong C, Xiong LW, Horiuchi M, et al. Sulfated glycans and elevated temperature stimulate PrP(sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J 2001;20:377–386.PubMedCrossRefGoogle Scholar
  41. 41.
    Shaked GM, Meiner Z, Avraham I, et al. Reconstitution of prion infectivity from solubilized protease-resistant PrP and non-protein components of prion rods. J Biol Chem 2001;276:14324–14328.PubMedCrossRefGoogle Scholar
  42. 42.
    Caughey B, Raymond GJ. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 1993;67:643–650.PubMedGoogle Scholar
  43. 43.
    Kimberlin RH, Walker CA. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 1986;30:409–413.PubMedGoogle Scholar
  44. 44.
    Perry G, Richey P, Siedlak SL, et al. Basic fibroblast growth factor binds to filametous inclusions of neurodegenerative diseases. Brain Res 1992;579:350–352.PubMedCrossRefGoogle Scholar
  45. 45.
    Cohlberg JA, Li J, Uversky VN, Fink AL. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 2002;41:1502–1511.PubMedCrossRefGoogle Scholar
  46. 46.
    Brunden KR, Richter-Cook NJ, Chaturvedi N, Frederickson RC. pH-dependent binding of synthetic beta-amyloid peptides to glycosaminoglycans. J Neurochem 1993; 61:2147–2154.PubMedCrossRefGoogle Scholar
  47. 47.
    Buee L, Ding W, Anderson JP, et al. Binding of vascular heparan sulfate proteoglycan to Alzheimer's amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Res 1993;627:199–204.PubMedCrossRefGoogle Scholar
  48. 48.
    Fraser PE, Darabie AA, McLaurin JA. Amyloid-beta interactions with chondroitin sulfate-derived monosaccharides and disaccharides: implications for drug development. J Biol Chem 2001;76:6412–6419.CrossRefGoogle Scholar
  49. 49.
    Leveugle B, Scanameo A, Ding W, Fillit H. Binding of heparan sulfate glycosaminoglycan to beta-amyloid peptide: inhibition by potentially therapeutic polysulfated compounds. Neuroreport 1994;5:1389–1392.PubMedGoogle Scholar
  50. 50.
    McLaurin J., Franklin T, Zhang X, et al. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem 1999;266:1101–1110.PubMedCrossRefGoogle Scholar
  51. 51.
    Castillo GM, Ngo C, Cummings J, et al. Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer's disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J Neurochem 1997;69:2452–2465.PubMedCrossRefGoogle Scholar
  52. 52.
    McLaurin J, Franklin T, Kuhns WJ, Fraser PE. A sulfated proteoglycan aggregation factor mediates amyloid-beta peptide fibril formation and neurotoxicity. Amyloid 1999;6:233–243.PubMedGoogle Scholar
  53. 53.
    Castillo GM, Lukito W, Wigh, TN, Snow AD. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J Neurochem 1999;72:1681–1687.PubMedCrossRefGoogle Scholar
  54. 54.
    Fukuchi K, Hart M, Li L. Alzheimer's disease and heparan sulfate proteoglycan. Front Biosci 1998;3:d327–d337.PubMedGoogle Scholar
  55. 55.
    Celio MR, Spreafico R, De Biasi S, Vitellaro-Zuccarello L. Perineuronal nets: past and present. Trends Neurosci 1998;21:510–515.PubMedCrossRefGoogle Scholar
  56. 56.
    Härtig W, Klein C, Brauer K, et al. Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison. Neurobiol Aging 2001;22:25–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Pollack SJ, Sadler II, Hawtin SR, et al. Sulfated glycosaminoglycans and dyes attenuate the neurotoxic effects of beta-amyloid in rat PC12 cells. Neurosci Lett 1995a;184:113–116.CrossRefGoogle Scholar
  58. 58.
    Sadler II, Smith DW, Shearman MS, et al. Sulfated compounds attenuate beta-amyloid toxicity by inhibiting its association with cells. Neuroreport 1995;7:49–53.PubMedGoogle Scholar
  59. 59.
    Snow AD, Sekiguchi R, Nochlin D, et al. An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 1994;12:219–234.PubMedCrossRefGoogle Scholar
  60. 60.
    Bergamaschini L, Donarini C, Rossi E, et al. Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiol Aging 2002; 23:531–536.PubMedCrossRefGoogle Scholar
  61. 61.
    Bergamaschini L, Rossi E., Storini C, et al. Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer's disease. J Neurosci 2004;24:4181–4186.PubMedCrossRefGoogle Scholar
  62. 62.
    Ban TA, Morey LC, Santini V. Clinical investigations with Ateroid in old-age dementias. Semin Thromb Hemost 1991;17:161–163.PubMedGoogle Scholar
  63. 63.
    Conti L, Placidi GF, Cassano GB. Ateroid in the treatment of dementia: results of a clinical trial. In: Ban TA, Lehmann HE (eds) Diagnosis and Treatment of Old Age Dementias. Basel: Karger, 1989,pp 76–84.Google Scholar
  64. 64.
    Conti L, Re F, Lazzerini F, et al. Glycosaminoglycan polysulfate (Ateroid) in old-age dementias: effects upon depressive symptomatology in geriatric patients. Prog Neuropsychopharmacol Biol Psychiatry 1989;13:977–981.PubMedCrossRefGoogle Scholar
  65. 65.
    Parnetti L, Ban TA, Senin U. Glycosaminoglycan polysulfate in primary degenerative dementia―pilot study of biologic and clinical effects. Neuropsychobiology 1995; 31:76–80.PubMedGoogle Scholar
  66. 66.
    Cornelli U. The therapeutical approach to Alzheimer's disease. In: Casu JHAB (ed) Non-Anticoagulant Actions of Glycosaminoglycans (GAGs). New York: Plenum, 1996, pp 249–279.Google Scholar
  67. 67.
    Lorens SA, Guschwan M, Hata N, et al. Behavioral, endocrine, and neurochemical effects of sulfomucopolysaccharide treatment in the aged Fischer 344 male rat. Semin Thromb Hemost 1991;17:164–173.PubMedGoogle Scholar
  68. 68.
    Ma Q, Dudas B, Hejna M, et al. The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thromb Res 2002;105:447–453.PubMedCrossRefGoogle Scholar
  69. 69.
    Walzer M, Lorens S, Hejna M, et al. Low molecular weight glycosaminoglycan blockade of beta amyloid induced neuropathology. Eur J Pharmacol 2002;445:211–220.PubMedCrossRefGoogle Scholar
  70. 70.
    Chambers CB, Sigurdsson EM, Hejna MJ, et al. Amyloid-beta injection in rat amygdala alters tau protein but not mRNA expression. Exp Neurol 2000;162:158–170.PubMedCrossRefGoogle Scholar
  71. 71.
    Kowall NW, McKee AC, Yankner BA, Beal MF. In vivo neurotoxicity of beta-amyloid [beta(1–40)] and the beta(25–35) fragment. Neurobiol Aging 1992;13:537–542.PubMedCrossRefGoogle Scholar
  72. 72.
    Sigurdsson EM, Lorens SA, Hejna MJ, et al. Local and distant histopathological effects of unilateral amyloid-beta 25–35 injections into the amygdala of young F344 rats. Neurobiol Aging 1996;17:893–901.PubMedCrossRefGoogle Scholar
  73. 73.
    Sigurdsson EM, Lee JM, Dong XW, et al. Bilateral injections of amyloid-beta 25–35 into the amygdale of young Fischer rats: behavioral, neurochemical, and time dependent histopathological effects. Neurobiol Aging 1997;18:591–608.PubMedCrossRefGoogle Scholar
  74. 74.
    Sigurdsson EM, Lee JM, Dong XW, et al. Laterality in the histological effects of injections of amyloid beta 25–35 into the amygdala of young Fischer rats. J Neuropathol Exp Neurol 1997;56:714–725.PubMedGoogle Scholar
  75. 75.
    Takashima A, Honda T, Yasutake K, et al. Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 1998;31:317–323.PubMedCrossRefGoogle Scholar
  76. 76.
    Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301 tau transgenic mice induced by Abeta 42 fibrils. Science 2001;293:1491–1495.PubMedCrossRefGoogle Scholar
  77. 77.
    Kisilevsky R, Lemieux LJ, Fraser PE, et al. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: implications for Alzheimer's disease. Nat Med 1995;1:143–148.PubMedCrossRefGoogle Scholar
  78. 78.
    Damon DH, D'Amore PA, Wagner JA. Sulfated glycosaminoglycans modify growth factor-induced neurite outgrowth in PC12 cells. J Cell Physiol 1988;135:293–300.PubMedCrossRefGoogle Scholar
  79. 79.
    Damon DH, Lobb RR, D'Amore PA, Wagner JA. Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half-life. J Cell Physiol 1989;138:221–226.PubMedCrossRefGoogle Scholar
  80. 80.
    Neufeld G, Gospodarowicz D, Dodge L, Fujii DK. Heparin modulation of the neurotropic effects of acidic and basic fibroblast growth factors and nerve growth factor on PC12 cells. J Cell Physiol 1987;131:131–140.PubMedCrossRefGoogle Scholar
  81. 81.
    Walicke PA. Interactions between basic fibroblast growth factor (FGF) and glycosoaminoglycans in promoting neurite outgrowth. Exp Neurol 1988;102:144–148.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhou FY, Kan M, Owens RT, et al. Heparin-dependent fibroblast growth factor activities: effects of defined heparin oligosaccharides. Eur J Cell Biol 1997;73:71–80.PubMedGoogle Scholar
  83. 83.
    Mervis RF, McKean J, Zats S, et al. Neurotrophic effects of the glycosaminoglycan C3 on dendritic arborization and spines in the adult rat hippocampus: a quantitative Golgi study. CNS Drug Rev 2000;6:44–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lucilla Parnetti
    • 1
  • Umberto Cornelli
  1. 1.Neurology SectionUniversity of PerugiaItaly

Personalised recommendations