Role of Oxidative Insult and Neuronal Survival in Alzheimer’s and Parkinson’s Diseases

  • Akihiko Nunomura
  • Paula I. Moreira
  • Xiongwei Zhu
  • Adam D. Cash
  • Mark A. Smith
  • George Perry
Part of the Advances in Behavioral Biology book series (ABBI, volume 57)


Mild Cognitive Impairment Lewy Body Senile Plaque Free Radic Biol Mutant Huntingtin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith MA, Rottkamp CA, Nunomura A, et al. Oxidative stress in Alzheimer's disease. Biochim Biophys Acta 2000;1502(1):139–144PubMedGoogle Scholar
  2. 2.
    Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol 2003;53(suppl 3):S26–S36; discussion S36–S28PubMedCrossRefGoogle Scholar
  3. 3.
    Gomez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. Ann Neurol 1997;41(1):17–24PubMedCrossRefGoogle Scholar
  4. 4.
    Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114 (Pt 5):2283–2301PubMedCrossRefGoogle Scholar
  5. 5.
    Hamburger V. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 1975;160(4):535–546PubMedCrossRefGoogle Scholar
  6. 6.
    Perry G, Nunomura A, Smith MA. A suicide note from Alzheimer disease neurons? Nat Med 1998;4(8):897–898PubMedCrossRefGoogle Scholar
  7. 7.
    Jellinger KA, Stadelmann C. Problems of cell death in neurodegeneration and Alzheimer's disease. J Alzheimers Dis 2001;3(1):31–40PubMedGoogle Scholar
  8. 8.
    Gastard MC, Troncoso JC, Koliatsos VE. Caspase activation in the limbic cortex of subjects with early Alzheimer's disease. Ann Neurol 2003;54(3):393–398PubMedCrossRefGoogle Scholar
  9. 9.
    Hartmann A, Hunot S, Michel PP, et al. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci U S A 2000;97(6):2875–2880PubMedCrossRefGoogle Scholar
  10. 10.
    Raina AK, Hochman A, Zhu X, et al. Abortive apoptosis in Alzheimer's disease. Acta Neuropathol (Berl) 2001;101(4):305–310Google Scholar
  11. 11.
    Graeber MB, Grasbon-Frodl E, Abell-Aleff P, Kosel S. Nigral neurons are likely to die of a mechanism other than classical apoptosis in Parkinson's disease. Parkinsonism Relat Disord 1999;5(4):187–192CrossRefPubMedGoogle Scholar
  12. 12.
    Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000;97(26):14376–14381PubMedCrossRefGoogle Scholar
  13. 13.
    Hy LX, Keller DM. Prevalence of AD among whites: a summary by levels of severity. Neurology 2000;55(2):198–204PubMedGoogle Scholar
  14. 14.
    Fahn S, Sulzer D. Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx 2004;1(1):139–154PubMedCrossRefGoogle Scholar
  15. 15.
    Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993;262(5134):689–695PubMedCrossRefGoogle Scholar
  16. 16.
    Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 2002;82(3):637–672PubMedGoogle Scholar
  17. 17.
    Guo Q, Sopher BL, Furukawa K, et al. Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997;17(11):4212–4222PubMedGoogle Scholar
  18. 18.
    Eckert A, Steiner B, Marques C, et al. Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J Neurosci Res 2001;64(2):183–192PubMedCrossRefGoogle Scholar
  19. 19.
    Hashimoto M, Hsu LJ, Rockenstein E, et al. Alpha-synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem 2002;277(13):11465–11472PubMedCrossRefGoogle Scholar
  20. 20.
    Marques CA, Keil U, Bonert A, et al. Neurotoxic mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 2003;278(30):28294–28302PubMedCrossRefGoogle Scholar
  21. 21.
    Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998;70(5):2212–2215PubMedCrossRefGoogle Scholar
  22. 22.
    Guo Q, Sebastian L, Sopher BL, et al. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 1999;72(3):1019–1029PubMedCrossRefGoogle Scholar
  23. 23.
    Leutner S, Czech C, Schindowski K, et al. Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci Lett 2000;292(2):87–90PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi M, Dore S, Ferris CD, et al. Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer's disease. Neuron 2000;28(2):461–473PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuoka Y, Picciano M, La Francois J, Duff K. Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease, Neuroscience 2001;104(3):609–613PubMedCrossRefGoogle Scholar
  26. 26.
    Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001;21(12):4183–4187PubMedGoogle Scholar
  27. 27.
    LaFontaine MA, Mattson MP, Butterfield DA. Oxidative stress in synaptosomal proteins from mutant presenilin-1 knock-in mice: implications for familial Alzheimer's disease. Neurochem Res 2002;27(5):417–421PubMedCrossRefGoogle Scholar
  28. 28.
    Cecchi C, Fiorillo C, Sorbi S, et al. Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer's patients. Free Radic Biol Med 2002;33(10):1372–1379PubMedCrossRefGoogle Scholar
  29. 29.
    Bogdanovic N, Zilmer M, Zilmer K, et al. The Swedish APP670/671 Alzheimer's disease mutation: the first evidence for strikingly increased oxidative injury in the temporal inferior cortex. Dement Geriatr Cogn Disord 2001;12(6):364–370PubMedCrossRefGoogle Scholar
  30. 30.
    Nunomura A, Chiba S, Lippa CF, et al. Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease. Neurobiol Dis 2004;17(1):108–113PubMedCrossRefGoogle Scholar
  31. 31.
    Hyun DH, Lee M, Hattori N, et al. Effect of wild-type or mutant parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem 2002;277(32):28572–28577PubMedCrossRefGoogle Scholar
  32. 32.
    Miyata M, Smith JD. Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 1996;14(1):55–61PubMedCrossRefGoogle Scholar
  33. 33.
    Montine KS, Reich E, Neely MD, et al. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J Neuropathol Exp Neurol 1998;57(5):415–425PubMedCrossRefGoogle Scholar
  34. 34.
    Ramassamy C, Averill D, Beffert, U et al. Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer's disease is related to the apolipoprotein E genotype. Free Radic Biol Med 1999;27(5-6):544–553PubMedCrossRefGoogle Scholar
  35. 35.
    Tamaoka A, Miyatake F, Matsuno S, et al. Apolipoprotein E allele-dependent antioxidant activity in brains with Alzheimer's disease. Neurology 2000;54(12):2319–2321PubMedGoogle Scholar
  36. 36.
    Mattson MP. Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med 2003;139(5 Pt 2):441–444PubMedGoogle Scholar
  37. 37.
    Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci 2003;26:81–104PubMedCrossRefGoogle Scholar
  38. 38.
    Haan MN, Wallace R. Can dementia be prevented? Brain aging in a population-based context. Annu Rev Public Health 25:1–24Google Scholar
  39. 39.
    Logroscino G, Marder K, Cote L, et al. Dietary lipids and antioxidants in Parkinson's disease: a population-based case-control study. Ann Neurol 39(1):89–94Google Scholar
  40. 40.
    Lai BC, Marion SA, Teschke K, Tsui JK. Occupational and environmental risk factors for Parkinson's disease. Parkinsonism Relat Disord 8(5):297–309Google Scholar
  41. 41.
    Gorell JM, Peterson EL, Rybicki BA, Johnson CC. Multiple risk factors for Parkinson's disease. J Neurol Sci 217(2):169–174Google Scholar
  42. 42.
    Preston AM. Cigarette smoking―nutritional implications. Prog Food Nutr Sci 15(4):183–217Google Scholar
  43. 43.
    Moriel P, Plavnik FL, Zanella MT, et al. Lipid peroxidation and antioxidants in hyperlipidemia and hypertension. Biol Res 33(2):105–112Google Scholar
  44. 44.
    Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38Google Scholar
  45. 45.
    Perna AF, Ingrosso D, De Santo NG. Homocysteine and oxidative stress. Amino Acids 25(3-4):409–417Google Scholar
  46. 46.
    Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24(2):133–150Google Scholar
  47. 47.
    Gupta VB, Anitha S, Hegde ML, et al. Aluminium in Alzheimer's disease: are we still at a crossroad? Cell Mol Life Sci 62(2):143–158Google Scholar
  48. 48.
    Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208Google Scholar
  49. 49.
    Abdollahi M, Ranjbar A, Shadnia S, et al. Pesticides and oxidative stress: a review. Med Sci Monit 2004;10(6):RA141–RA147PubMedGoogle Scholar
  50. 50.
    Hamburger SA, McCay PB. Spin trapping of ibuprofen radicals: evidence that ibuprofen is a hydroxyl radical scavenger. Free Radic Res Commun 1990;9(3-6):337–342PubMedGoogle Scholar
  51. 51.
    Behl C, Skutella T, Lezoualc'h F, et al. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 1997;51(4):535–541PubMedGoogle Scholar
  52. 52.
    Commenges D, Scotet V, Renaud S, et al. Intake of flavonoids and risk of dementia. Eur J Epidemiol 2000;16(4):357–363PubMedCrossRefGoogle Scholar
  53. 53.
    Green P, Glozman S, Weiner L, Yavin E. Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim Biophys Acta 2001;1532(3):203–212PubMedGoogle Scholar
  54. 54.
    Stoll LL, McCormick ML, Denning GM, Weintraub NL. Antioxidant effects of statins. Drugs Today (Barc) 2004;40(12):975–990CrossRefGoogle Scholar
  55. 55.
    De Rijk MC, M. Breteler MM, den Breeijen JH, et al. Dietary antioxidants and Parkinson disease: the Rotterdam Study. Arch Neurol 1997;54(6):762–765PubMedGoogle Scholar
  56. 56.
    Chen H, Zhang SM, Hernan MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 2003;60(8):1059–1064PubMedCrossRefGoogle Scholar
  57. 57.
    Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson's disease: a meta-analysis. Lancet Neurol 2005;4(6):362–365PubMedCrossRefGoogle Scholar
  58. 58.
    Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001;60(8):759–767PubMedGoogle Scholar
  59. 59.
    Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000;59(11): 1011–1017PubMedGoogle Scholar
  60. 60.
    Abe T, Tohgi H, Isobe C, et al. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer's disease. J Neurosci Res 2002;70(3):447–450PubMedCrossRefGoogle Scholar
  61. 61.
    Pratico D, Clark CM, Liun F, et al. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 2002;59(6):972–976PubMedCrossRefGoogle Scholar
  62. 62.
    Migliore L, Fontana I, Trippi F, et al. Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients. Neurobiol Aging 2005;26(5):567–573PubMedCrossRefGoogle Scholar
  63. 63.
    Rinaldi P, Polidori MC, Metastasio A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer's disease. Neurobiol Aging 2003;24(7):915–919PubMedCrossRefGoogle Scholar
  64. 64.
    Drake J, Link CD, Butterfield DA, Oxidative stress precedes fibrillar deposition of Alzheimer's disease amyloid beta-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging 2003;24(3):415–420PubMedCrossRefGoogle Scholar
  65. 65.
    Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 2000;39(23):6951–6959PubMedCrossRefGoogle Scholar
  66. 66.
    Gomez-Ramos A, Diaz-Nido J, Smith MA, et al. Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 2003;71(6):863–870PubMedCrossRefGoogle Scholar
  67. 67.
    Nakashima H, Ishihara T, Yokota O, et al. Effects of alpha-tocopherol on an animal model of tauopathies. Free Radic Biol Med 2004;37(2):176–186PubMedCrossRefGoogle Scholar
  68. 68.
    Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease. FASEB J 2004;18(2):323–325PubMedGoogle Scholar
  69. 69.
    Bayer TA, Schafer S, Simons A, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003;100(24):14187–14192PubMedCrossRefGoogle Scholar
  70. 70.
    Li F, Calingasan NY, Yu F, et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem 2004;89(5):1308–1312PubMedCrossRefGoogle Scholar
  71. 71.
    Krishnan S, Chi EY, Wood SJ, et al. Oxidative dimer formation is the critical rate-limiting step for Parkinson's disease alpha-synuclein fibrillogenesis. Biochemistry 2003;42(3):829–837PubMedCrossRefGoogle Scholar
  72. 72.
    Jenner P, Dexter DT, Sian J, et al. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease; The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol 1992;32(suppl):S82–S87PubMedCrossRefGoogle Scholar
  73. 73.
    Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988;74(3):199–205PubMedCrossRefGoogle Scholar
  74. 74.
    Berg D, Roggendorf W, Schroder U, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch Neurol 2004;59(6):999–1005CrossRefGoogle Scholar
  75. 75.
    Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3(12):1301–1306PubMedCrossRefGoogle Scholar
  76. 76.
    Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002;22(16):7006–7015PubMedGoogle Scholar
  77. 77.
    Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem 1990;54(3):823–827PubMedCrossRefGoogle Scholar
  78. 78.
    Gu G, Reyes PE, Golden GT, et al. Mitochondrial DNA deletions/rearrangements in Parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 2002;61(7):634–639PubMedGoogle Scholar
  79. 79.
    7 Loeffler DA, Connor JR, Juneau PL, et al. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J Neurochem 1995;65(2):710–724Google Scholar
  80. 80.
    Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 2001;21(9):3017–3023PubMedGoogle Scholar
  81. 81.
    Mezzetti A, Pierdomenico SD, Costantini F, et al. Copper/zinc ratio and systemic oxidant load: effect of aging and aging-related degenerative diseases. Free Radic Biol Med 1998;25(6):676–681PubMedCrossRefGoogle Scholar
  82. 82.
    Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002;419(6905):367–374PubMedCrossRefGoogle Scholar
  83. 83.
    Arendt T. Alzheimer's disease as a disorder of dynamic brain self-organization. Prog Brain Res 2005;147:355–378PubMedGoogle Scholar
  84. 84.
    Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci 2003;23(7):2557–2563PubMedGoogle Scholar
  85. 85.
    Andorfer C, Acker CM, Kress Y, et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005;25(22):5446–5454PubMedCrossRefGoogle Scholar
  86. 86.
    Lee SS, Kim YM, Junn E, et al. Cell cycle aberrations by alpha-synuclein over-expression and cyclin B immunoreactivity in Lewy bodies. Neurobiol Aging 2003;24(5):687–696PubMedCrossRefGoogle Scholar
  87. 87.
    Zhu X, Raina AK, Perry G,. Smith MA. Alzheimer's disease: the two-hit hypothesis. Lancet Neurol 2004;3(4):219–226PubMedCrossRefGoogle Scholar
  88. 88.
    Staropoli JF, McDermott C, Martinat C, et al. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 2003;37(5):735–749PubMedCrossRefGoogle Scholar
  89. 89.
    Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004;431(7010):805–810PubMedCrossRefGoogle Scholar
  90. 90.
    Davis DG, Schmitt FA, Wekstein DR, Markesbery WR. Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 1999;58(4):376–388PubMedGoogle Scholar
  91. 91.
    Neve RL, Robakis NK. Alzheimer's disease: a re-examination of the amyloid hypothesis. Trends Neurosci 1998;21(1):15–19PubMedCrossRefGoogle Scholar
  92. 92.
    Irizarry MC, McNamara M, Fedorchak K, et al. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997;56(9):965–973PubMedGoogle Scholar
  93. 93.
    Cash AD, Aliev G, Siedlak SL, et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. Am J Pathol 2003;162(5):1623–1627PubMedGoogle Scholar
  94. 94.
    Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 1999;58(2):188–197PubMedGoogle Scholar
  95. 95.
    Perry RH, Irving D, Tomlinson BE. Lewy body prevalence in the aging brain: relationship to neuropsychiatric disorders, Alzheimer-type pathology and catecholaminergic nuclei. J Neurol Sci 1990;100(1-2):223–233PubMedCrossRefGoogle Scholar
  96. 96.
    Lowe JS, Leigh N. Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield's Neuropathology. Arnold, London, 2002, pp 325–430.Google Scholar
  97. 97.
    De Rijk MC, Launer LJ, Berger K, et al. Prevalence of Parkinson's disease in Europe: a collaborative study of population-based cohorts; Neurologic Diseases in the Elderly Research Group. Neurology 2000;54(11 suppl 5):S21–S23PubMedGoogle Scholar
  98. 98.
    Wakisaka Y, Furuta A, Tanizaki Y, et al. Age-associated prevalence and risk factors of Lewy body pathology in a general population: the Hisayama study. Acta Neuropathol (Berl) 2003;106(4):374–382CrossRefGoogle Scholar
  99. 99.
    Gertz HJ, Siegers A, Kuchinke J. Stability of cell size and nucleolar size in Lewy body containing neurons of substantia nigra in Parkinson's disease. Brain Res 1994;637(1-2): 339–341PubMedCrossRefGoogle Scholar
  100. 100.
    Bergeron C, Petrunka C, Weyer L, Pollanen MS. Altered neurofilament expression does not contribute to Lewy body formation. Am J Pathol 1996;148(1):267–272PubMedGoogle Scholar
  101. 101.
    Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392(6676):605–608PubMedCrossRefGoogle Scholar
  102. 102.
    Matsuoka Y, Vila M, Lincoln S, et al. Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 2001;8(3):535–539PubMedCrossRefGoogle Scholar
  103. 103.
    Lo Bianco C, Ridet JL, Schneider BL, et al. Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci U S A 2002;99(16):10813–10818PubMedCrossRefGoogle Scholar
  104. 104.
    Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003;26:267–298PubMedCrossRefGoogle Scholar
  105. 105.
    Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004;11(3):213–228PubMedCrossRefGoogle Scholar
  106. 106.
    Kontush A. Amyloid-beta: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease. Free Radic Biol Med 2001;31(9):1120–1131PubMedCrossRefGoogle Scholar
  107. 107.
    Zou K, Gong JS, Yanagisawa K, M. Michikawa M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 2002;22(12):4833–4841PubMedGoogle Scholar
  108. 108.
    Bishop GM, Robinson SR. Human Abeta1-42 reduces iron-induced toxicity in rat cerebral cortex. J Neurosci Res 2003;73(3):316–323PubMedCrossRefGoogle Scholar
  109. 109.
    Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 2001;30(1):119–128PubMedCrossRefGoogle Scholar
  110. 110.
    Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 1998;158(1):47–52PubMedCrossRefGoogle Scholar
  111. 111.
    Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003;42(10):2768–2773PubMedCrossRefGoogle Scholar
  112. 112.
    Cuajungco MP, Goldstein LE, Nunomura A, et al. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 2000;275(26):19439–19442PubMedCrossRefGoogle Scholar
  113. 113.
    Lee HG, Perry G, Moreira PI, et al. Tau phosphorylation in Alzheimer's disease: pathogen or protector? Trends Mol Med 2005;11(4):164–169PubMedCrossRefGoogle Scholar
  114. 114.
    Takeda A, Smith MA, Avila J, et al. In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of tau induced by 4-hydroxy-2-nonenal modification. J Neurochem 2000;75(3):1234–1241PubMedCrossRefGoogle Scholar
  115. 115.
    Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 1997;94(18):9866–9868PubMedCrossRefGoogle Scholar
  116. 116.
    Sayre LM, Perry G, Harris PL, et al. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals. J Neurochem 2000;74(1):270–279PubMedCrossRefGoogle Scholar
  117. 117.
    Manning-Bog AB, McCormack AL, Purisai MG, et al. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 2003;23(8):3095–3099PubMedGoogle Scholar
  118. 118.
    Uversky VN, Yamin G, Souillac PO, et al. Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 2002;517(1-3):239–244PubMedCrossRefGoogle Scholar
  119. 119.
    Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathol (Berl) 2000;100(2):111–114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akihiko Nunomura
    • 1
  • Paula I. Moreira
  • Xiongwei Zhu
  • Adam D. Cash
  • Mark A. Smith
  • George Perry
  1. 1.Department of Psychiatry and NeurologyAsahikawa Medical CollegeJapan

Personalised recommendations