Abstract
Nanoparticles have now emerged as widely used diagnostic agents in biomedicine. They possess unique features that can be exploited with imaging. Among these are an increased sensitivity in detection through amplification of signal changes; a manipulation of surface structures and enhancement of uptake by selected cells (macrophages); altered pharmacokinetics allowing, for instance, their use as blood pool imaging agents; and physicochemical manipulations of energy (i.e., quantum dots). Specific aspects of nanoparticles are introduced to illustrate their use in biomedical imaging.
Keywords
- Contrast Agent
- Myocardial Perfusion Imaging
- Colloidal Gold
- Biomedical Imaging
- Chemical Exchange Saturation Transfer
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Aime, S., Castelli, D.D., Terreno, E., 2005. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44, 5513–5515.
Alivisatos, A.P., 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937.
Ashburn, W.L., Braunwald, E., Simon, A.L., Peterson, K.L., Gault, J.H., 1971. Myocardial perfusion imaging with radioactive-labeled particles injected directly into the coronary circulation of patients with coronary artery disease. Circulation 44, 851–865.
Bulte, J.W., 2005. Hot spot MRI emerges from the background. Nat Biotechnol 23, 945–946.
Chan, W.C.W., Nie, S.M., 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018.
Fee, H.J., Robinson, D.S., Sample, W.F., Graham, L.S., Holmes, E.C., Morton, D.L., 1978. The determination of lymph shed by colloidal gold scanning in patients with malignant melanoma: a preliminary study. Surgery 84, 626–632.
Havron, A., Seltzer, S.E., Davis, M.A., Shulkin, P., 1981. Radiopaque liposomes: a promising new contrast material for computed tomography of the spleen. Radiology 140, 507–511.
Horisberger, M., Rosset, J., 1977. Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem 25, 295–305.
Mendonca Dias, M.H., Lauterbur, P.C., 1986. Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magn Reson Med 3, 328–330.
Morgan, J.R., Williams, K.E., Davies, R.L., Leach, K., Thomson, M., Williams, L.A., 1981. Localisation of experimental staphylococcal abscesses by 99MTC-technetiumlabelled liposomes. J Med Microbiol 14, 213–217.
Ohgushi, M., Nagayama, K., Wada, A., 1978. Dextran-magnetite: new relaxation agent and its application to T2 measurements in gel. J Magn Reson 29, 599–601.
Rabin, O., Manuel Perez, J., Grimm, J., Wojtkiewicz, G., Weissleder, R., 2006. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5, 118–122.
Renshaw, P.F., Owen, C.S., Evans, A.E., Leigh, J.S., Jr., 1986a. Immunospecific NMR contrast agents. Magn Reson Imag 4, 351–357.
Renshaw, P.F., Owen, C.S., McLaughlin, A.C., Frey, T.G., Leigh, J.S., Jr., 1986b. Ferromagnetic contrast agents: a new approach. Magn Reson Med 3, 217-225.
Rifkind, D.A., Hsu, K.C., Morgan, Seegal, B.C., Knox, A.W., Rose, H.M., 1960. Use of ferritin-conjugated antibody to localize antigen by electron microscopy. Nature 187, 1094-1095.
Ryan, P.J., Davis, M.A., Melchior, D.L., 1983. The preparation and characterization of liposomes containing X-ray contrast agents. Biochim Biophys Acta 756, 106–110.
Shapiro, E.M., Skrtic, S., Koretsky, A.P., 2005. Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53, 329–338.
Singer, S.J., Schick, A.F., 1961. Properties of specific stains for electron microscopy prepared by conjugation of antibody molecules with ferritin. J Biophys Biochem Cytol 9, 519–&.
Unger, E., Needleman, P., Cullis, P., Tilcock, C., 1988. Gadolinium-DTPA liposomes as a potential MRI contrast agent. Work in progress. Invest Radiol 23, 928–932.
Widder, D.J., Simeone, J.F., 1986. Microbubbles as a contrast agent for neurosonography and ultrasound-guided catheter manipulation: in vitro studies. AJR Am J Roentgenol 147, 347–352.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Bulte, J.W., Modo, M.M. (2008). Introduction: The Emergence of Nanoparticles as Imaging Platform in Biomedicine. In: Bulte, J.W., Modo, M.M. (eds) Nanoparticles in Biomedical Imaging. Fundamental Biomedical Technologies, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72027-2_1
Download citation
DOI: https://doi.org/10.1007/978-0-387-72027-2_1
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-72026-5
Online ISBN: 978-0-387-72027-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)