Skip to main content

Use of Radiolabeled Liposomes for Tumor Imaging

  • Chapter
Nanoparticles in Biomedical Imaging

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 102))

Abstract

Liposomes or microscopic phospholipid vesicles have a long history of medical applications as drug carriers. Among other pharmaceutical agents, liposomes have been used as carrier systems for various imaging agents including those used in gamma-scintigraphy. This chapter provides a brief description of the preparation and application of radiolabeled liposomes. Various methods of liposome labeling with gamma-emitting isotopes are considered as well as specific problems associated with obtaining the optimal preparations and results of both animal experiments with radiolabeled liposomes and early clinical data. The examples of using the radiolabeled liposomes for the development of the liposomal anti-cancer drugs are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abra, R.M., Hunt, C.A.,1982. Liposome disposition in vivo IV: the interaction of sequential doses of liposomes having different diameters. Res Commun Chem Pathol Pharmacol 36, 17–31.

    PubMed  CAS  Google Scholar 

  • Ahkong, Q.F., Tilcock, C.,1992. Attachment of 99mTc to lipid vesicles containing the lipophilic chelate dipalmitoylphosphatidylethanolamine-DTTA. Int J Rad Appl Instrum B 19, 831–840.

    PubMed  CAS  Google Scholar 

  • Alafandy, M., Goffinet, G., Umbrain, V., D’Haese, J., Camu, F., Legros, F.J.,1996. 99mTechnetium-stannous oxinate as marker of liposome formulations. Nucl Med Biol 23, 881–887.

    Article  PubMed  CAS  Google Scholar 

  • Allen, T.M., Hansen, C., Martin, F., Redemann, C., Yau-Young, A.,1991. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Bao, A., Goins, B., Klipper, R., Negrete, G., Mahindaratne, M., Phillips, W.T.,2003. A novel liposome radiolabeling method using 99mTc-“SNS/S” complexes: in vitro and in vivo evaluation. J Pharm Sci 92, 1893–1904.

    Article  PubMed  CAS  Google Scholar 

  • Bao, A., Goins, B., Klipper, R., Negrete, G., Phillips, W.T.,2004. Direct 99mTc labeling of pegylated liposomal doxorubicin (Doxil) for pharmacokinetic and non-invasive imaging studies. J Pharmacol Exp Ther 308, 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y., Amselem, S., Goren, D., Cohen, R., Gelvan, D., Samuni, A., Golden, E.B., Gabizon, A.,1993. Stability of liposomal doxorubicin formulations: problems and prospects. Med Res Rev 13, 449–491.

    Article  PubMed  CAS  Google Scholar 

  • Beaumier, P.L., Hwang, K.J., Slattery, J.T.,1983. Effect of liposome dose on the elimination of small unilamellar sphingomyelin/cholesterol vesicles from the circulation. Res Commun Chem Pathol Pharmacol 39, 277–289.

    PubMed  CAS  Google Scholar 

  • Belhaj-Tayeb, H., Briane, D., Vergote, J., Kothan, S., Leger, G., Bendada, S.E., Tofighi, M., Tamgac, F., Cao, A., Moretti, J.L.,2003. In vitro and in vivo study of 99mTc-MIBI encapsulated in PEG-liposomes: a promising radiotracer for tumour imaging. Eur J Nucl Med Mol Imaging 30, 502–509.

    Article  PubMed  CAS  Google Scholar 

  • Blume, G., Cevc, G., Crommelin, M.D., Bakker-Woudenberg, I.A., Kluft, C., Storm, G.,1993. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1149, 180–184.

    Article  PubMed  CAS  Google Scholar 

  • Boerman, O.C., Laverman, P., Oyen, W.J., Corstens, F.H., Storm, G.,2000. Radiolabeled liposomes for scintigraphic imaging. Prog Lipid Res 39, 461–475.

    Article  PubMed  CAS  Google Scholar 

  • Bosworth, M.E., Hunt, C.A.,1982. Liposome disposition in vivo II: Dose dependency. J Pharm Sci 71, 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Caride, V.J., Taylor, W., Cramer, J.A., Gottschalk, A., 1976. Evaluation of liposome-entrapped radioactive tracers as scanning agents. Part 1: Organ distribution of liposome (99mTc-DTPA) in mice. J Nucl Med 17, 1067–1072.

    PubMed  CAS  Google Scholar 

  • Chakilam, A.R., Pabba, S., Mongayt, D., Iakoubov, L.Z., Torchilin, V.P., 2004. A single monoclonal antinuclear autoantibody with nucleosome-restricted specificity inhibits the growth of diverse human tumors in nude mice. Cancer Therapy 2, 353–364.

    Google Scholar 

  • Cheung, T.W., Remick, S.C., Azarnia, N., Proper, J.A., Barrueco, J.R., Dezube, B.J.,1999. AIDS-related Kaposi’s sarcoma: a phase II study of liposomal doxorubicin. The TLC D-99 Study Group. Clin Cancer Res 5, 3432–3437.

    PubMed  CAS  Google Scholar 

  • Dagar, S., Krishnadas, A., Rubinstein, I., Blend, M.J., Onyuksel, H.,2003. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release 91, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Damen, J., Regts, J., Scherphof, G.,1981. Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition. Biochim Biophys Acta 665, 538–545.

    PubMed  CAS  Google Scholar 

  • Elbayoumi, T.A., Torchilin, V.P.,2006. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 33, 1196–1205.

    Article  PubMed  CAS  Google Scholar 

  • Erdogan, S., Roby, A., Sawant, R., Hurley, J., Torchilin, V.P., 2006a. Gadolinium-loaded polychelating polymer-containing cancer cell-specific immunoliposomes. J Liposome Res 16, 45–55.

    Article  CAS  Google Scholar 

  • Erdogan, S., Roby, A., Torchilin, V.P., 2006b. Enhanced tumor visualization by gamma scintigraphy with 111In-labeled polychelating polymer-containing immunoliposomes. Molecular Pharmaceutics. (In press).

    Google Scholar 

  • Gabizon, A.A.,1995. Liposome circulation time and tumor targeting: implications for cancer therapy. Adv Drug Deliv Rev 16, 285–294.

    Article  CAS  Google Scholar 

  • Gabizon, A.A., Lyass, O., Berry, G.J., Wildgust, M.,2004. Cardiac safety of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in patients with advanced malignancies. Cancer Invest 22, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Gabizon, A., Huberty, J., Straubinger, R.M., Price, D.C., Papahadjopoulos, D.,1988. An improved method for in vivo tracking and imaging of liposomes using a gallium-67deferoxamine complex. J Liposome Res 1, 123–135.

    Article  Google Scholar 

  • Gabizon, A., Price, D.C., Huberty, J., Bresalier, R.S., Papahadjopoulos, D., 1990. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res. 50: 6371–6378.

    PubMed  CAS  Google Scholar 

  • Gabizon, A., Shmeeda, H., Barenholz, Y.,2003. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42, 419–436.

    Article  PubMed  CAS  Google Scholar 

  • Goins, B., Klipper, R., Rudolph, A.S., Phillips, W.T.,1994. Use of technetium-99mliposomes in tumor imaging. J Nucl Med 35, 1491–1498.

    PubMed  CAS  Google Scholar 

  • Goins, B.A., Phillips, W.T.,2001. The use of scintigraphic imaging as a tool in the development of liposome formulations. Prog Lipid Res 40, 95–123.

    Article  PubMed  CAS  Google Scholar 

  • Goins, B., Phillips, T.,2003. Radiolabeled liposomes for imaging and biodistribution studies. In: Liposomes: A Practical Approach, Vol. 1, eds V. Torchilin, V. Weissig, 2nd edn, pp. 319–336. Oxford University Press, London.

    Google Scholar 

  • Goto, R., Kubo, H., Okada, S.,1989. Liposomes prepared from synthetic amphiphiles. I. Their technetium labeling and stability. Chem Pharm Bull (Tokyo) 37, 1351–1354.

    CAS  Google Scholar 

  • Gregoriadis, G., Neerunjun, D.E.,1974. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem 47, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis, G., Putman, D., Louis, L., Neerunjun, D., 1974a. Comparative effect and fate of non-entrapped and liposome-entrapped neuraminidase injected into rats. Biochem J 140, 323–330.

    CAS  Google Scholar 

  • Gregoriadis, G., Wills, E.J., Swain, C.P., Tavill, A.S., 1974b. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1, 1313–1316.

    Article  CAS  Google Scholar 

  • Gupta, B., Levchenko, T.S., Mongayt, D.A., Torchilin, V.P.,2005. Monoclonal antibody 2C5-mediated binding of liposomes to brain tumor cells in vitro and in subcutaneous tumor model in vivo. J Drug Target 13, 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, K.J., Lewanski, C., Northcote, A.D., Whittaker, J., Peters, A.M., Vile, R.G., Stewart, J.S., 2001a. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur J Cancer 37, 2015–2022.

    Article  CAS  Google Scholar 

  • Harrington, K.J., Mohammadtaghi, S., Uster, P.S., Glass, D., Peters, A.M., Vile, R.G., Stewart, J.S., 2001b. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7, 243–254.

    CAS  Google Scholar 

  • Harrington, K.J., Rowlinson-Busza, G., Syrigos, K.N., Abra, R.M., Uster, P.S., Peters, A.M., Stewart, J.S., 2000a. Influence of tumour size on uptake of(111)ln-DTPA-labelled pegylated liposomes in a human tumour xenograft model. Br J Cancer 83, 684–688.

    Article  CAS  Google Scholar 

  • Harrington, K.J., Rowlinson-Busza, G., Syrigos, K.N., Uster, P.S., Abra, R.M., Stewart, J.S., 2000b. Biodistribution and pharmacokinetics of 111In-DTPA-labelled11. Use of Radiolabeled Liposomes for Tumor Imaging 233 pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies. Br J Cancer 83, 232–238.

    Article  CAS  Google Scholar 

  • Harrington, K.J., Rowlinson-Busza, G., Syrigos, K.N., Uster, P.S., Vile, R.G., Stewart, J.S., 2000c. Pegylated liposomes have potential as vehicles for intratumoral and subcutaneous drug delivery. Clin Cancer Res 6, 2528–2537.

    CAS  Google Scholar 

  • Herschman, H.R., MacLaren, D.C., Iyer, M., Namavari, M., Bobinski, K., Green, L.A., Wu, L., Berk, A.J., Toyokuni, T., Barrio, J.R., Cherry, S.R., Phelps, M.E., Sandgren, E.P., Gambhir, S.S.,2000. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 59, 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Hnatowich, D.J., Friedman, B., Clancy, B., Novak, M.,1981. Labeling of preformed liposomes with Ga-67 and Tc-99m by chelation. J Nucl Med 22, 810–814.

    PubMed  CAS  Google Scholar 

  • Huang, S.K., Mayhew, E., Gilani, S., Lasic, D.D., Martin, F.J., Papahadjopoulos, D.,1992. Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res 52, 6774–6781.

    PubMed  CAS  Google Scholar 

  • Hwang, K.J., Merriam, J.E., Beaumier, P.L., Luk, K.F.,1982. Encapsulation, with high efficiency, of radioactive metal ions in liposomes. Biochim Biophys Acta 716, 101–109.

    PubMed  CAS  Google Scholar 

  • Iakoubov, L.Z., Torchilin, V.P.,1997. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 9, 439–446.

    PubMed  CAS  Google Scholar 

  • Ishida, O., Maruyama, K., Sasaki, K., Iwatsuru, M.,1999. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 190, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Jaggi, M., Khar, R., Chauhan, U., Gangal, S.,1991. Liposomes as carriers of technetium99m glucoheptonate for liver imaging. Int J Pharm 69, 77–79.

    Article  CAS  Google Scholar 

  • Janoff, A.S.,1992. Lipids, liposomes, and rational drug design. Lab Invest 66, 655–658.

    PubMed  CAS  Google Scholar 

  • Kabalka, G.W., Davis, M.A., Moss, T.H., Buonocore, E., Hubner, K., Holmberg, E., Maruyama, K., Huang, L.,1991. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med 19, 406–415.

    Article  PubMed  CAS  Google Scholar 

  • Khalifa, A., Dodds, D., Rampling, R., Paterson, J., Murray, T.,1997. Liposomal distribution in malignant glioma: possibilities for therapy. Nucl Med Commun 18, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Khaw, B.A., Klibanov, A., O’Donnell, S.M., Saito, T., Nossiff, N., Slinkin, M.A., Newell, J.B., Strauss, H.W., Torchilin, V.P.,1991. Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J Nucl Med 32, 1742–1751.

    PubMed  CAS  Google Scholar 

  • Kirby, C., Clarke, J., Gregoriadis, G., 1980a. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett 111, 324–328.

    Article  CAS  Google Scholar 

  • Kirby, C., Clarke, J., Gregoriadis, G., 1980b. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186, 591–598.

    CAS  Google Scholar 

  • Klibanov, A.L., Maruyama, K., Torchilin, V.P., Huang, L.,1990. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268, 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis, M.I., Koukouraki, S., Fezoulidis, I., Kelekis, N., Kyrias, G., Archimandritis, S., Karkavitsas, N., 2000a. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 83, 1281–1286.

    Article  CAS  Google Scholar 

  • Koukourakis, M.I., Koukouraki, S., Giatromanolaki, A., Archimandritis, S.C., Skarlatos, J., Beroukas, K., Bizakis, J.G., Retalis, G., Karkavitsas, N., Helidonis, E.S.,1999. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 17, 3512–3521.

    PubMed  CAS  Google Scholar 

  • Koukourakis, M.I., Koukouraki, S., Giatromanolaki, A., Kakolyris, S., Georgoulias, V., Velidaki, A., Archimandritis, S., Karkavitsas, N.N., 2000b. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas–rationale for combination with radiotherapy. Acta Oncol 39, 207–211.

    Article  CAS  Google Scholar 

  • Lasch, J., Weissig, V., Brandl, M.,2003. Preparation of liposomes. In: Liposomes: A Practical Approach, eds V. P. Torchilin, V. Weissig, 2nd edn, pp. 3–29. Oxford University Press, Oxford, New York.

    Google Scholar 

  • Lasic, D.D.,1993. Liposomes from physics to applications, 1st edn. Elsevier Science publishers, Amsterdam.

    Google Scholar 

  • Lasic, D.D., Martin, F., eds, 1995. Stealth liposomes. CRC Press, Boca Raton.

    Google Scholar 

  • Lasic, D.D., Papahadjopoulos, D., eds, 1998. Medical applications of liposomes. Elsevier, New York.

    Google Scholar 

  • Laverman, P., Dams, E.T., Oyen, W.J., Storm, G., Koenders, E.B., Prevost, R., van der Meer, J.W., Corstens, F.H., Boerman, O.C.,1999. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J Nucl Med 40, 192–197.

    PubMed  CAS  Google Scholar 

  • Laverman, P., Zalipsky, S., Oyen, W.J., Dams, E.T., Storm, G., Mullah, N., Corstens, F.H., Boerman, O.C.,2000. Improved imaging of infections by avidin-induced clearance of 99mTc-biotin-PEG liposomes. J Nucl Med 41, 912–918.

    PubMed  CAS  Google Scholar 

  • Love, W.G., Amos, N., Williams, B.D., Kellaway, I.W.,1989. Effect of liposome surface charge on the stability of technetium (99mTc) radiolabelled liposomes. J Microencapsul 6, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Lukyanov, A.N., Elbayoumi, T.A., Chakilam, A.R., Torchilin, V.P.,2004. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H.,2001. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41, 189–207.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.,2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65, 271–284.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J.R., Williams, K.E., Davies, R.L., Leach, K., Thomson, M., Williams, L.A.,1981. Localisation of experimental staphylococcal abscesses by 99MTC-technetiumlabelled liposomes. J Med Microbiol 14, 213–217.

    Article  PubMed  CAS  Google Scholar 

  • Mori, A., Klibanov, A.L., Torchilin, V.P., Huang, L.,1991. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 284, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, Y., Wu, J., Duncan, R., Strohalm, J., Ulbrich, K., Akaike, T., Maeda, H.,1998. Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89, 307–314.

    PubMed  CAS  Google Scholar 

  • Ogihara-Umeda, I., Sasaki, T., Nishigori, H.,1992. Development of a liposome-encapsulated radionuclide with preferential tumor accumulation–the choice of radionuclide and chelating ligand. Int J Rad Appl Instrum B 19, 753–757.

    PubMed  CAS  Google Scholar 

  • Ogihara-Umeda, I., Sasaki, T., Nishigori, H.,1993. Active removal of radioactivity in the blood circulation using biotin-bearing liposomes and avidin for rapid tumour imaging. Eur J Nucl Med 20, 170–172.

    Article  PubMed  CAS  Google Scholar 

  • Oku, N., 1999. Delivery of contrast agents for positron emission tomography imaging by liposomes. Adv Drug Deliv Rev 37, 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D.,1988. Liposome formation and properties: an evolutionary profile. Biochem Soc Trans 16, 910–912.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Allen, T.M., Gabizon, A., Mayhew, E., Matthay, K., Huang, S.K., Lee, K.D., Woodle, M.C., Lasic, D.D., Redemann, C., Martin, F.J.,1991. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad SciUSA88, 11460–11464.

    Article  CAS  Google Scholar 

  • Patel, H.M., Boodle, K.M., Vaughan-Jones, R.,1984. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99mtechnetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 801, 76–86.

    PubMed  CAS  Google Scholar 

  • Philippot, J.R., Puyal, C.O.,1995. In: Liposomes, New Systems and New Trends in Their Application, Vol. 1, eds F. Puisieux, P. Couvreur, J. Delattre, J. P. Devissaguet, pp. 193–215. Editions de Sante, Paris.

    Google Scholar 

  • Phillips, T.W., Goins, B.,1995. Targeted delivery of imaging agents by liposomes. In: Handbook of targeted delivery of imaging agents, ed V. P. Torchilin. CRS Press, Boca Raton.

    Google Scholar 

  • Phillips, W.T.,1999. Delivery of gamma-imaging agents by liposomes. Adv Drug Deliv Rev 37, 13–32.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, W.T., Rudolph, A.S., Goins, B., Timmons, J.H., Klipper, R., Blumhardt, R.,1992. A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Int J Rad Appl Instrum B 19 539–547.

    PubMed  CAS  Google Scholar 

  • Presant, C.A., Blayney, D., Proffitt, R.T., Turner, A.F., Williams, L.E., Nadel, H.I., Kennedy, P., Wiseman, C., Gala, K., Crossley, R.J., et al., 1990. Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet 335, 1307–1309.

    Article  PubMed  CAS  Google Scholar 

  • Proffitt, R.T., Williams, L.E., Presant, C.A., Tin, G.W., Uliana, J.A., Gamble, R.C., Baldeschwieler, J.D.,1983. Tumor-imaging potential of liposomes loaded with In-111NTA: biodistribution in mice. J Nucl Med 24, 45–51.

    PubMed  CAS  Google Scholar 

  • Richardson, V.J., Ryman, B.E., Jewkes, R.F., Jeyasingh, K., Tattersall, M.N., Newlands, E.S., Kaye, S.B.,1979. Tissue distribution and tumour localization of 99mtechnetium-labelled liposomes in cancer patients. Br J Cancer 40, 35–43.

    PubMed  CAS  Google Scholar 

  • Senior, J., Crawley, J.C., Gregoriadis, G.,1985. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim Biophys Acta 839, 1–8.

    PubMed  CAS  Google Scholar 

  • Senior, J., Gregoriadis, G.,1982. Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci 30, 2123–2136.

    Article  PubMed  CAS  Google Scholar 

  • Senior, J.H.,1987. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3, 123–193.

    PubMed  CAS  Google Scholar 

  • Slinkin, M.A., Klibanov, A.L., Torchilin, V.P.,1991. Terminal-modified polylysine-based chelating polymers: highly efficient coupling to antibody with minimal loss in immunoreactivity. Bioconjug Chem 2, 342–348.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, L.G.,1997. Positron emission tomography: Current role for diagnosis and therapy monitoring in oncology. Oncologist 2, 381–388.

    PubMed  Google Scholar 

  • Suresh, M., Cao, Y.,1998. A simple and efficient method for radiolabeling of preformed liposomes. J Pharm Pharm Sci 1, 31–37.

    PubMed  CAS  Google Scholar 

  • Swenson, C.E., Bolcsak, L.E., Batist, G., Guthrie, T.H., Jr., Tkaczuk, K.H., Boxenbaum, H., Welles, L., Chow, S.C., Bhamra, R., Chaikin, P.,2003. Pharmacokinetics of doxorubicin administered i.v. as Myocet (TLC D-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anticancer Drugs 14, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P.,1994. Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods 4, 244–258.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P., ed1995. Handbook of targeted delivery of imaging agents. CRS Press, Boca Raton.

    Google Scholar 

  • Torchilin, V.P.,1996. Liposomes as delivery agents for medical imaging. Mol Med Today 2, 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P.,1997. Pharmacokinetic considerations in the development of labeled liposomes and micelles for diagnostic imaging. Q J Nucl Med 41, 141–153.

    PubMed  CAS  Google Scholar 

  • Torchilin, V.P., 2000a. Drug targeting. Eur J Pharm Sci 11 Suppl 2, S81–S91.

    Article  Google Scholar 

  • Torchilin, V.P., 2000b. Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol 1, 183–215.

    Article  CAS  Google Scholar 

  • Torchilin, V.P.,2005. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4, 145–160.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P., Klibanov, A.L.,1991. The antibody-linked chelating polymers for nuclear therapy and diagnostics. Crit Rev Ther Drug Carrier Syst 7, 275–308.

    PubMed  CAS  Google Scholar 

  • Torchilin, V.P., Lukyanov, A.N., Gao, Z., Papahadjopoulos-Sternberg, B., 2003. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad SciUSA 100, 6039–6044.

    Article  CAS  Google Scholar 

  • Torchilin, V.P., Omelyanenko, V.G., Papisov, M.I., Bogdanov, A.A., Jr., Trubetskoy, V.S., Herron, J.N., Gentry, C.A.,1994. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1195, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Torchilin, V.P., Trubetskoy, V.S., 1995a. In vivo visualizing of organs and tissues with liposomes. J Liposome Research 5, 795–812.

    Article  CAS  Google Scholar 

  • Torchilin, V.P., Trubetskoy, V.S., 1995b. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16, 141–155.

    CAS  Google Scholar 

  • Torchilin, V.P., Weissig, V.,2003. Liposomes: a practical approach. 2nd edn. Oxford University Press, Oxford, New York.

    Google Scholar 

  • Tulpule, A., Yung, R.C., Wernz, J., Espina, B.M., Myers, A., Scadden, D.T., Cabriales, S., Ilaw, M., Boswell, W., Gill, P.S.,1998. Phase II trial of liposomal daunorubicin in the treatment of AIDS-related pulmonary Kaposi’s sarcoma. J Clin Oncol 16, 3369–3374.

    PubMed  CAS  Google Scholar 

  • Wolf, G.L.,1995. Targeted delivery of imaging agents: An over view. In: Handbook of targeted delivery of imaging agents, ed V.P. Torchilin. CRS Press, Boca Raton.

    Google Scholar 

  • Yuan, F., Leunig, M., Huang, S.K., Berk, D.A., Papahadjopoulos, D., Jain, R.K.,1994. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54, 3352–3356.

    PubMed  CAS  Google Scholar 

  • Zheng, J.G., Tan, T.Z.,2004. Antisense imaging of colon cancer-bearing nude mice with liposome-entrapped 99m-technetium-labeled antisense oligonucleotides of c-myc mRNA. World J Gastroenterol 10, 2563–2566.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Elbayoumi, T., Torchilin, V. (2008). Use of Radiolabeled Liposomes for Tumor Imaging. In: Bulte, J.W., Modo, M.M. (eds) Nanoparticles in Biomedical Imaging. Fundamental Biomedical Technologies, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72027-2_11

Download citation

Publish with us

Policies and ethics