Skip to main content

Abstract

This chapter summarizes the spatial disorientation problems and navigation difficulties described by astronauts and cosmonauts, and relates them to research findings on orientation and navigation in humans and animals. Spacecraft crew are uniquely free to float in any relative orientation with respect to the cabin, and experience no vestibular and haptic cues that directly indicate the direction of “down”. They frequently traverse areas with inconsistently aligned visual vertical cues. As a result, most experience “Visual Reorientation Illusions” (VRIs) where the spacecraft floors, walls and ceiling surfaces exchange subjective identities. The illusion apparently results from a sudden reorientation of the observer’s allocentric reference frame. Normally this frame realigns to local interior surfaces, but in some cases it can jump to the Earth beyond, as with “Inversion Illusions” and EVA height vertigo. These perceptual illusions make it difficult for crew to maintain a veridical perception of orientation and place within the spacecraft, make them more reliant upon landmark and route strategies for 3D navigation, and can trigger space motion sickness. This chapter distinguishes VRIs and Inversion Illusions, based on firsthand descriptions from Vostok, Apollo, Skylab, Mir, Shuttle and International Space Station crew. Theories on human “gravireceptor” and “idiotropic” biases, visual “frame” and “polarity” cues, top-down processing effects on object orientation perception, mental rotation and “direction vertigo” are discussed and related to animal experiments on limbic head direction and place cell responses. It is argued that the exchange in perceived surface identity characteristic of human VRIs is caused by a reorientation of the unseen allocentric navigation plane used by CNS mechanisms coding place and direction, as evidenced in the animal models. Human VRI susceptibility continues even on long flights, perhaps because our orientation and navigation mechanisms evolved to principally support 2D navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aoki, H., Ohno, R., and Yamaguchi, T., 2003, A study of spatial orientation in a virtual weightless environment. Part 2 Causes of spatial cognition errors, Journal of Architecture, Planning, and Environmental Engineering 563:85-92.

    Google Scholar 

  • Aoki, H., Ohno, R., Yamaguchi, T., 2005, The effect of the configuration and the interior design of a virtual weightless space station on numan spatial orientation, Acta Astronaut 56:1005-1016.

    Article  PubMed  Google Scholar 

  • Aubert, H., 1861, Eine scheinbare Drehung von Objekten bei Neigung des Kopfes nach rechts oder links, Virchows Arch 20:381-393.

    Article  Google Scholar 

  • Benveniste, D., 2004, Cognitive conflict in learning three-dimenaional space station structures, SM Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, September, 2004.

    Google Scholar 

  • Best, P. J., White, A. M., and Minai, A, 2001, Spatial processing in the brain: the activity of hippocampal place cells, Annu Rev Neurosci 24:459-86.

    Article  PubMed  CAS  Google Scholar 

  • Brandt, T., Arnold F, Bles, W. and Kapteyn T.S., 1980, The mechanism of physiological height vertigo I: Theoretical approach and psychophysics. Acta Otolaryngol 89:534-40.

    PubMed  Google Scholar 

  • Burrough, B., 1998, Dragonfly: NASA and the crisis aboard the MIR, Harper Collins, New York

    Google Scholar 

  • Calton, J. L., and Taube, J.S., 2005, Degradation of head direction cell activity during inverted locomotion, J Neurosci 25:2420-2428.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, H.S.F. Jr. 1976, A House In Space, Holt, Rinehhart and Winston, Austin, TX.

    Google Scholar 

  • Coss, R. G., Clearwater, Y. A., Barbour, C. G., and Towers S. R., 1989, Functional dècor in the International Space Station: body orientation and picture perception. NASA TM 102242, November, 1989.

    Google Scholar 

  • Cheung, B., 2004, Nonvisual illusions in flight. in: Spatial Disorientation in Aviation, F. H. Previc and W. R. Ercoline, eds, Volume 203, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, pp. 243-281.

    Google Scholar 

  • Colle H. A., and Reid G. B., 1998, The Room Effect: metric spatial knowledge of local and separated regions, Presence 7:116-128.

    Article  Google Scholar 

  • Creem, S. H., Wraga, M.-J., Proffitt, D. R., 2001, Imagining physically impossible self-rotations: geometry is more important than gravity, Cognition 81:41-64.

    Article  PubMed  CAS  Google Scholar 

  • Dyde, R., Jenkin, M. R., and Harris L. R., 2006, The subjective visual vertical and the perceptual upright, Exp Brain Res, in press.

    Google Scholar 

  • Gazenko, O., 1964, Medical studies on the cosmic spacecraft Vostok and Voskhod, NASA TTF-9207.

    Google Scholar 

  • Glasauer, S., and Mittelstaedt, H., 1992, Determinants of orientation in microgravity, Acta Astronaut 27:1-9.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A., and R. S. Kellogg, 1967, Inversion illusion in parabolic flight: its probable dependence on otolith function, Aviat Space Envir Md 38(11):1099-1013.

    Google Scholar 

  • Gurovskiy, N. N., Kosmolinskiy, F. P., and Melnikov, L. N, 1980, Designing the Living and Working Conditions of Cosmonauts, Moscow, Mashinstroyeniye.

    Google Scholar 

  • Hafting, T., Fyhn, M., Molden, S., Moser, M. B., and Moser E. I., 2005, Microstructure of a spatial map in the entrohinal cortex, Nature 436:801-806.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, M., Slabbekoorn, D., Van Goozen, S., Cohen-Kettenis, P., and Gunturkun, O., 2000, Sex horomones affect spatial abilities during the menstrual cycle, Behav Neurosci 114:1245-1250.

    Article  Google Scholar 

  • Homan, D., 2001, NASA Johnson Space Center VR Laboratory DOUG software, personal communication.

    Google Scholar 

  • Howard, I. P., 1982, Human Visual Orientation, Wiley, Toronto.

    Google Scholar 

  • Howard, I. P., and Childerson, L., 1994, The contribution of motion, the visual frame and visual polarity to sensations of body tilt, Perception 23:753-762.

    Article  PubMed  CAS  Google Scholar 

  • Howard, I. P., and Hu, G., 2001, Visually induced reorientation illusions, Perception 30:583-600.

    Article  PubMed  CAS  Google Scholar 

  • Howard, I. P., Hu, G., Saxe, R., and Zacher J. E., 2005, Visual orientation in a mirror world tilted 90 degrees, Perception 34:7-15.

    Article  PubMed  Google Scholar 

  • Huttenlocher, J., and Presson, C., 1979, The coding and transformation of spatial information. Cognitive Psychol 11:375-394.

    Article  CAS  Google Scholar 

  • Jenkin, H. L., Zacher, J. E., Oman, C. M., and Harris L. R., 2006, Effect of field of view on a visual reorientation illusion: does the levitation illusion depend on the view seen or the scene viewed? Abstract presented at the 7th Symposium on the Role of the Vestibular Organs in Space Exploration, Noordwijk, the Netherlands, June 8, 2006 (available online: www.congrex.nl/06a07).

    Google Scholar 

  • Johnston, R. S., and Deitlein, L. F., 1977, Biomedical Results from Skylab, NASA SP-377, US Government Printing Office, Washington DC.

    Google Scholar 

  • Jonsson, E., 2002, Inner Navigation: Why we get lost and how we find our way, Scribner, New York.

    Google Scholar 

  • Kitmacher, G. H., 2002, Design of the Space Station habitable modules, Paper presented at the 53rd International Astronautical Congress, 10-19 Oct, 2002, Houston, TX. Paper IAC-02-IAA.8.2.04. http://www.spacearchitect.org/pubs/IAC-02-IAA.8.2.04.pdf

    Google Scholar 

  • Knierim, J. J., McNaughton, B. L., and Poe, G. R., 2000, Three –dimensional spatial selectivity of hippocampal neurons during space flight, Nature Neurosci 3:209-210.

    Article  PubMed  CAS  Google Scholar 

  • Knierim, J. J., Poe, G. R., and McNaughton, B. L., 2003, Ensemble neural coding of place in zero-g, in: The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90 Neurolab Spacelab Mission. J. C. Buckey, Jr., and J. L. Homick, eds., NASA SP-2003-535, pp.63-68.

    Google Scholar 

  • Kornilova, L. N., 1997, Orientation illusions in spaceflight, J Vestib Res 7:429-439.

    Article  PubMed  CAS  Google Scholar 

  • Kornilova, L. N., Muller, K. H., and Chernobylskiy, L. M., 1995, Phenomenology of Illusory Reactions in Weightlessness, Fiziologii Cheloveka 21:50-62.

    CAS  Google Scholar 

  • Kozhevnikov, M., and Hegarty, M., 2001, A dissociation between object manipulation spatial ability and spatial orientation ability, Mem Cognition 29(5):745-756.

    Google Scholar 

  • Lackner, J. R., 1992, Spatial orientation in weightlessness, Perception 21:803-812.

    Article  PubMed  CAS  Google Scholar 

  • Lackner, J. R., and Graybiel, A., 1983, Perceived orientation in free-fall depends on visual, postural, and architectural factors, Aviat Space Envir Md 54(1):47-51.

    CAS  Google Scholar 

  • Lackner J. R., and DiZio P., 1998, Spatial Orientation as a Component of Presence: Insights Gained from Nonterrestrial Environments, Presence, 7:108-115.

    Article  Google Scholar 

  • Leone, G., Lipshits, M., Gurfinkel, V., and Berthoz, A., 1995, Is there an effect of weightlessness on mental rotation of three-dimensional objects? Cognitive Brain Res 2:255-267.

    Article  CAS  Google Scholar 

  • Linenger, J., 2000, Off the Planet, McGraw Hill, New York.

    Google Scholar 

  • Liu, A. M., Duda, K., Oman, C. M., Natapoff, A., 2002, Effects of parabolic flight zero-gravity on looming linear vection, J Vestib Res 11(3-5):325.

    Google Scholar 

  • Lu, E., 2005, Ed Lu’s Journal Entry {#}12: Which Way is Up? NASA Johnson Space Center press release, Sept. 2003. http://www.edlu.com/whichWay.pdf

    Google Scholar 

  • Marquez, J. J., Oman, C. M., Liu, A. M., Beall, A. C., 2002, Spacecraft in miniature: a tool for the acquisition of mental representations of large environments. J Vestib Res 11:338.

    Google Scholar 

  • Mast, F. W., and Oman, C. M., 2004, Top-down processing and visual reorientation illusions in a virtual reality environment, Swiss J Psychol 63(3):143-149.

    Article  Google Scholar 

  • Mittelstaedt, H., 1983, A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272-281.

    Article  PubMed  CAS  Google Scholar 

  • Mittelstaedt, H., 1987, Inflight and postflight results on the causation of inversion illusions and space sickness, in: Proceedings of the Norderney Symposium on the Scientific Results of the German Spacelab Mission D-1. Norderney, Germany, 27-29 August, 1986, P. R. Sahm, R. Jansen, and H. M. Keller, eds., German Ministry of Research and Technology, Bonn, Germany.

    Google Scholar 

  • Mittelstaedt, H., 1989, Interactions of form and orientation, in: Spatial Displays and Spatial Instruments,, S. R. Ellis and M. K. Kaiser, eds., NASA Conference Publication 10032. pp.42.1-42.14.

    Google Scholar 

  • Mittelstaedt, H., 1996, Somatic gravireception, Biol Psychol 42:53-74.

    Article  PubMed  CAS  Google Scholar 

  • Mukai, C., and Igarashi, M., 1995, Microgravity and space motion sickness. J Otolaryngol Head Neck Surg 11(7):967-972.

    Google Scholar 

  • NASA, 1995, Man-Systems Integration Standards (MSIS), NASA Johnson Space Center Bioastronautics/Habitability and Human Factors Office.

    Google Scholar 

  • NASA Space Station Program Office, 1999, Flight crew integration design requirements SSP 50005, NASA Johnson Space Center, Houston TX.

    Google Scholar 

  • Oman, C. M., 2003, Human visual orientation in weightlessness, in: Levels of Perception, L. Harris and M. Jenkin, eds, Springer-Verlag, New York, pp. 375-398.

    Chapter  Google Scholar 

  • Oman, C. M., 1987, The role of static visual orientation cues in the etiology of space motion sickness, in: Proceedings of the Symposium on Vestibular Organs and Altered Force Environment., Houston, TX, October, 1987, honoring A. Graybiel, M. Igarashi, ed., NASA/Space Biomedical Research Institute, pp.25-37.

    Google Scholar 

  • Oman, C. M, Benveniste, D., Buckland, D. A., Aoki, H., Liu, A., and Natapoff, A., 2006, Spacecraft module visual verticals and training affect spatial task performance, Habitation 10(3/4):202-203.

    Google Scholar 

  • Oman, C. M., and Skwersky, A., 1997, Effect of scene polarity and head orientation on illusions in a tumbling virtual environment, Aviat Space Envir Md 68:649.

    Google Scholar 

  • Oman, C. M., Howard, I. P., Smith T., Beall, A. C., Natapoff, A., Zacher, J. E., and Jenkin H. L., 2003, The role of visual cues in microgravity spatial orientation, in: The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90 Neurolab Spacelab Mission, J.C. Buckey, Jr. and J.L. Homick, eds, NASA SP-2003-535, pp. 69-82.

    Google Scholar 

  • Oman, C. M., Lichtenberg, B. K., and Money, K .E., 1984, Symptoms and signs of space motion sickness on Spacelab-1. NATO-AGARD Aerospace Medical Panel Symposium on Motion Sickness: Mechanisms, Prediction, Prevention and Treatment, Williamsburg, VA, NATO AGARD CP-372. Later published as:

    Google Scholar 

  • Oman, C. M., Lichtenberg, B. K., and Money, K. E., 1990, Symptoms and signs of space motion sickness on Spacelab-1, in: Motion and Space Sickness, G. H. Crampton, ed., Boca Raton, FL, CRC Press, pp.217-246.

    Google Scholar 

  • Oman, C. M, Lichtenberg, B. K, Money, K. E, and McCoy, R. K., 1986, M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability, Exp Brain Res 64:316-334.

    Article  PubMed  CAS  Google Scholar 

  • Oman, C. M., Shebilske, W. L., Richards, J. T., Tubre, T. C., Beall, A. C., and Natapoff, A., 2002, Three dimensional spatial memory and learning in real and virtual environments, Spatial Cognit Comput 2:355-372.

    Article  Google Scholar 

  • Parker, D. E., and Harm, D. L., 1993, Perceived self-orientation and self-motion in microgravity, after landing and during preflight adaptation training, J Vest Res 3:297-305.

    Google Scholar 

  • Reschke, M. F., Bloomberg, J. J., Paloski, W. H., Harm, D.L., and Parker D.E., 1994a, Physiologic adaptation to space flight - neurophysiologic aspects: sensory and motor function, in: Space Physiology and Medicine, A. E. Niccogossian, C. L. Huntoon, and S. L. Pool, eds., Lea and Febiger, pp. 261-285.

    Google Scholar 

  • Reschke, M. F., Harm, D. L., Parker, D.E., Sandoz, G.R., Homick, J.L. and Vanderploeg, J.M., 1994b, Physiologic adaptation to space flight - neurophysiologic aspects: Space Motion Sickness, in: Space Physiology and Medicine, A. E. Niccogossian, C.L. Huntoon, and S.L. Pool, eds., Lea and Febiger, pp. 228-255.

    Google Scholar 

  • Richards, J. T., Oman, C. M., Shebilske, W. L., Beall, A. C., Liu, A. M., and Natapoff, A., 2003, Training, transfer, and retention of three-dimensional spatial memory in virtual environments, J Vestib Res 12:223-238.

    Google Scholar 

  • Schmitt, H. H. and Reid D. J., 1985, Anecdotal information on space adaptation syndrome. University Space Research Association Division of Space Biomedicine, Houston, TX Report, July 1985.

    Google Scholar 

  • Tversky, B., 2003, Structures of mental spaces: how people think about space. Environ Behav 35:66-80.

    Article  Google Scholar 

  • Walz, C., 2002, Expedition Four: Spacewalking, ISS Style, available online http://www.spaceflight.nasa.gov/station/crew/exp4/eva/spacewalking.html

    Google Scholar 

  • Sadalla, E. K., Burroughs, W. J., and Staplin L. J, 1980, Reference points in spatial cognition. J Exp Psychol-Hum L 6:516-525.

    Article  CAS  Google Scholar 

  • Shebilske, W. L., Tubre, T, Tubre A. H., Oman, C. M., Richards, J. T., 2006, Three-dimensional spatial skill training in a simulated space station: random vs. blocked designs. Aviat Space Envir Md 77(4):404-409.

    Google Scholar 

  • Shepard, S. and Metzler, D., 1971, Mental rotation of three dimensional objects, Science 171:701-703.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, A. W. and White, S. H., 1975, The development of spatial representations of large-scale environments, in: Advances in child development and behaviour, H. W. Reese, ed., Academic Press, New York, pp. 9-55.

    Google Scholar 

  • Smart, K., Bowen, C., Carr D., and Novak J., 2001, ISS emergency egress: a system for crewmember pathway indication, paper presented at the 31st International Conference on Environmental Systems, Orlando, FL, July 9, 2000, SAE Technical Paper 2001-01-2184.

    Google Scholar 

  • Taube J. S., 1998, Head direction cells and the neurophysiological basis for a sense of direction. Prog Neurobiol 55:225-256.

    Article  PubMed  CAS  Google Scholar 

  • Taube, J. S., Stackman, R. W., Calton, J. L., and Oman, C. M., 2004, Rat head direction cell responses in zero-gravity parabolic flight, J Neurophysiol 92:2887-2997.

    Article  PubMed  Google Scholar 

  • Tolman, E. C., 1948, Cognitive Maps in Rats and Men, Psychol Rev 55:189-208.

    Article  PubMed  CAS  Google Scholar 

  • Titov, G. and Caidin M., 1962, I am Eagle! Bobs-Merrill.

    Google Scholar 

  • Viguier, C., 1882, Le sense de l’orientation et ses organs chez les animaux et chez l’homme, Rev Philos 14:1-36.

    Google Scholar 

  • Wang, R. F. and Spelke, E. S., 2002, Human spatial representation: insights from animals, Trends Cogn Sci 6:376-382.

    Article  PubMed  Google Scholar 

  • Wiener, S. I. and Taube, J. S., 2005, Head direction cells and the neural mechanisms of spatial orientation, MIT Press, Cambridge.

    Google Scholar 

  • Witkin, H. A. and Asch, S. E., 1948, Studies in space orientation: IV. Further experiments on perception of the upright with displaced visual fields, J Exp Psychol 38:762-782.

    Article  PubMed  CAS  Google Scholar 

  • Young, L. R., Oman, C. M., Watt, D. G., Money, K. E., Lichtenberg, B. K., Kenyon, R. V., and Arrott, A. P., 1986, MIT/Canadian vestibular experiments on the Spacelab-1 mission: 1. Sensory adaptation to weightlessness and readaptation to one-g: an overview, Exp Brain Res 64:291-298.

    PubMed  CAS  Google Scholar 

  • Young, L. R., Mendoza, J. C., Groleau, N., and Wojcik, P. W., 1996, Tactile influences on astronaut visual spatial orientation: Human neurovestibular experiments on Spacelab Life Sciences 2, J Appl Physiol 81:44-49.

    PubMed  CAS  Google Scholar 

  • Yuganov, E. M., Gorshkov, A. I., Kasyan, I. I., Bryanov, I.I., Kolosov, I. A., Kopanev, V. I., Lebedev, V. I., Popov, N. I., and Solodovnik, F. A., 1966, Vestibular reactions of cosmonauts during the flight in the Voskhod spaceship, Aerospace Med 37: 691.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Oman, C. (2007). Spatial Orientation and Navigation in Microgravity. In: Mast, F., Jäncke, L. (eds) Spatial Processing in Navigation, Imagery and Perception. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71978-8_13

Download citation

Publish with us

Policies and ethics