True Random Number Generators for Cryptography

References

  1. I. Goldberg and D. Wagner. Randomness in the Netscape Browser. Dr. Dobb’s Journal, January 1996.Google Scholar
  2. D. Davis, R. Ihaka, and P. P. Fenstermacher, Cryptographic randomness from air turbulence in disk drives. In Y. Desmedt editor, Advances in Cryptology (Crypto 94), vol. 839, pp. 114–120, Heidelberg, Germany: Springer-Verlag, 1994.Google Scholar
  3. Random.org. True random number service v2.0 beta. www.random.org
  4. J. von Neumann. Various techniques for use in connection with random digits, von Neumann’s Collected Works, vol. 5, Pergamon, pp. 768–770, 1963.Google Scholar
  5. B. Barak, R. Shaltiel, and E. Tomer. True Random Number Generators Secure in a Changing Environment. In Ç. K. Koç and C. Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems–-CHES 2003, pp. 166–180, Berlin, Germany, Lecture Notes in Computer Science, Vol. 2779 2003. Springer-Verlag, 2003.CrossRefGoogle Scholar
  6. B. Jun and P. Kocher. The Intel random number generator, White Paper Prepared for Intel Corporation, April 1999.Google Scholar
  7. T. E. Tkacik. A Hardware Random Number Generatork In B. S. Kaliski Jr., Ç. K. Koç, C. Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems–-CHES 2002, pp. 450–453, Berlin, Germany, Lecture Notes in Computer Science, Vol. 2523. Springer-Verlag Berlin Heidelberg, 2003.CrossRefGoogle Scholar
  8. G. Marsaglia. DIEHARD: A Battery of Tests of Randomness, http:// stat.fsu.edu/\(\sim\)geo, 1996.
  9. NIST. A Statistical Test Suite for Random and Pseudorandom Numbers. Special Publication 800-22, December 2000.Google Scholar
  10. W. Schindler and W. Killmann. Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications. In B. S. Kaliski Jr., Ç. K. Koç, C. Paar, editors, Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture Notes in Computer Science, Vol. 2523, pp. 431–449, Springer-Verlag Berlin Heidelberg, August 2002.Google Scholar
  11. Anwendungshinweise und Interpretationen zum Schema (AIS). AIS 32, Version 1, Bundesamt fr Sicherheit in der Informationstechnik, 2001.Google Scholar
  12. V. Bagini and M. Bucci. A Design of Reliable True Random Number Generator for Cryptographic Applications. In Ç. K. Koç and C. Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems–-CHES 1999, pp. 204–218, Berlin, Germany, Lecture Notes in Computer Science, Vol. 1717. Springer-Verlag, 1999.Google Scholar
  13. M. Dichtl. How to Predict the Output of a Hardware Random Number Generator, In C. D. Walter, Ç. K. Koç, C. Paar, editors, Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems – CHES 2003, Lecture Notes in Computer Science, Vol. 2779, pp. 181–188, Springer-Verlag Berlin Heidelberg, 2003.Google Scholar
  14. W. Schindler. A Stochastical Model and Its Analysis for a Physical Random Number Generator In K. G. Paterson editor, Cryptography and Coding–-IMA 2003, Springer, Lecture Notes in Computer Science, vol. 2898, 276–289, Berlin, 2003.Google Scholar
  15. M. Epstein, L. Hars, R. Krasinski, M. Rosner and H. Zheng. Design and Implementation of a True Random Number Generator Based on Digital Circuit Artifacts. In C. D. Walter, Ç. K. Koç, C. Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems–-CHES 2003, Lecture Notes in Computer Science, Vol. 2779, pp. 152–165. Springer-Verlag Berlin Heidelberg, 2003.CrossRefGoogle Scholar
  16. V. Fischer and M. Drutarovský. True Random Number Generator Embedded in Reconfigurable Hardware In B. S. Kaliski Jr., Ç. K. Koç, C. Paar, editors, Workshop on Cryptographic Hardware and Embedded Systems–-CHES 2002, pp. 415–430, Berlin, Germany, Lecture Notes in Computer Science, Vol. 2523. Springer-Verlag Berlin Heidelberg, 2003.CrossRefGoogle Scholar
  17. J. Dj. Golić,. New methods for digital generation and postprocessing of random data. IEEE Transactions on Computers 55 (10): 1217–1229, 2006.CrossRefGoogle Scholar
  18. P. Kohlbrenner and K. Gaj. An embedded true random number generator for FPGAs International Symposium on Field Programmable Gate Arrays. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate arrays, PP. 71–78, ACM Press, New York, NY, 2004.Google Scholar
  19. M. Bucci and R. Luzzi. Design of Testable Random Bit Generators, In J. R. Rao and B. Sunar, editors, Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems – CHES 2005, Lecture Notes in Computer Science, Vol. 3659, pp. 131–146, Springer-Verlag Berlin Heidelberg, August 2005.Google Scholar
  20. B. Sunar, W. J. Martin, and D. R. Stinson. A Provably Secure True Random Number Generator with Built-in Tolerance to Active Attacks, IEEE Transactions on Computers, vol. 58, no 1, p. 109–119, January 2007.CrossRefMathSciNetGoogle Scholar
  21. D. Schellekens, B. Preneel, and I. Verbauwhede FPGA Vendor Agnostic True Random Number Generator. In Proceedings of the 16th International Conference on Field Programmable Logic and Applications. pp. 1–6, August, 2006.Google Scholar
  22. M. Dichtl and J. Dj. Golić. High-Speed True Random Number Generation with Logic Gates Only. Pascal Paillier, Ingrid verbauwhede, editors, Proceedings of the Cryptographic Hardware and Embedded Systems – CHES 2007, 9th International Workshop, Vienna, Austria, September 10–13, 2007. Lecture Notes in Computer Science, vol. 4727, pp. 45-62, Springer Verlag, 2007.Google Scholar
  23. C. W. O’Donnell, G. E. Suh, and S. Devadas. PUF-Based Random Number Generation. Technical Report 481, MIT CSAIL, November 2004. Available at http://www.csg.csail.mit.edu/pubs/publications.html.
  24. G. E. Suh, C. W. ODonnell, I. Sachdev, and S. Devadas. Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions. Technical report, MIT CSAIL CSG Technical Memo 483, November 2004.Google Scholar
  25. S.-K. Yoo, B. Sunar, D. Karakoyunlu, and B. Birand. Practical Aspects of the Rings Design, Available at http://ece.wpi.edu/ \(\sim\)sunar/preprints/rings.pdf.
  26. B. Chor, O. Goldreich, J. Håastad, J. Friedman, S. Rudich, and R. Smolensky. The bit extraction problem or t-resilient functions, 26th IEEE Symposium on Foundations of Computer Science, pp. 396–407, 1985.Google Scholar
  27. C. J. Colbourn, J. H. Dinitz and D. R. Stinson. Applications of combinatorial designs to communications, cryptography and networking, Surveys in Combinatorics, 1999, pp. 37–100, (1999 British Combinatorial Conference).Google Scholar
  28. D. R. Stinson and K. Gopalakrishnan. Applications of Designs to Cryptography, In C. D. Colbourn, and J. H. Dinitz, editors, CRC Handbook of Combinatorial Designs, CRC Press 1996.Google Scholar
  29. R. A. Schulz. Random Number Generator Circuit. United States Patent, Patent Number 4905176, February, 27, 1990.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringWorcester Polytechnic InstituteWorcester

Personalised recommendations