Evaluation Criteria for Physical Random Number Generators

References

  1. 1.
    AIS 20. Functionality Classes and Evaluation Methodology for Deterministic Random Number Generators. Version 1, 02.12.1999 (mandatory if a German IT security certificate is applied for; English translation). www.bsi.bund.de/zertifiz/zert/interpr/ais20e.pdf
  2. 2.
    AIS 31. Functionality Classes and Evaluation Methodology for Physical Random Number Generators. Version 1, 25.09.2001 (mandatory if a German IT security certificate is applied for; English translation). www.bsi.bund.de/zertifiz/zert/interpr/ais31e.pdf
  3. 3.
    ANSI X9.82. Random Number Generation (Draft Version).Google Scholar
  4. 4.
    V. Bagini and M. Bucci. A Design of Reliable True Number Generators for Cryptographic Applications. In Ç. K. Koç and C. Paar editors, Cryptographic Hardware and Embedded Systems–-CHES 1999. Springer, Lecture Notes in Computer Science, Vol. 1717, pp. 204–218, Berlin, 1999.Google Scholar
  5. 5.
    M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo. A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications, IEEE Transactions on Computers, 52, pp. 403–409, 2003.CrossRefGoogle Scholar
  6. 6.
    M. Bucci and R. Lucci. Design of Testable Random Bit Generators. In J. Rao, B. Sunar editors, Cryptographic Hardware and Embedded Systems–-CHES 2005. Springer, Lecture Notes in Computer Science, Vol. 3659, pp. 147–156 Berlin, 2005.CrossRefGoogle Scholar
  7. 7.
    H. Bock, M. Bucci, and R. Luzzi. An Offset-Compensated Oscillator-Based Random Bit Source for Security Applications. In M. Joye, J.-J. Quisquater editors, Cryptographic Hardware and Embedded Systems–-CHES 2004. Springer, Lecture Notes in Computer Science, Vol. 3156 pp. 268–281, Berlin, 2004.CrossRefGoogle Scholar
  8. 8.
    Common Criteria for Information Technology Security Evaluation. Part 1–3; Version 3.1, Revision 1, (September 2006) and ISO 15408:1999.Google Scholar
  9. 9.
    Common Methodology for Information Technology Security Evaluation CEM-99/045. Part 2: Evaluation Methodology, Version 3.1, Revision 1, September 2006.Google Scholar
  10. 10.
    J.-S. Coron. On the Security of Random Sources. In H. Imai and Y. Zheng editors, Public Key Cryptography–-PKC 99. Springer, Lecture Notes in Computer Science, Vol. 1560, pp. 29–42, Berlin, 1999.Google Scholar
  11. 11.
    J.-S. Coron and D. Naccache. An Accurate Evaluation of Maurer’s Universal Test. In S. Tavares and H. Meijer editors, Selected Areas in Cryptography–-SAC ’98. Springer, Lecture Notes in Computer Science, Vol. 1556, pp. 57–71, Berlin, 1999.Google Scholar
  12. 12.
    L. Devroye. Non-Uniform Random Variate Generation. Springer, New York, 1986.MATHGoogle Scholar
  13. 13.
    M. Dichtl. How to Predict the Output of a Hardware Random Number Generator. In C. D. Walter, Ç. K. Koç, C. Paar editors, Cryptographic Hardware and Embedded Systems–-CHES 2003, Springer, Lecture Notes in Computer Science 2779, pp. 181–188, Berlin, 2003.Google Scholar
  14. 14.
    M. Dichtl and J. Golic. High-Speed True Random Number Generation with Logic Gates Only. In P. Paillier, I. Verbauwhede editors, Cryptographic Hardware and Embedded Systems–-CHES 2007, Springer, Lecture Notes in Computer Science 4727, pp. 45–62, Berlin, 2007.CrossRefGoogle Scholar
  15. 15.
    W. Feller. An Introduction to Probability Theory and Its Application, Vol. 1, 4th Revised Printed, Wiley, New York, 1970.Google Scholar
  16. 16.
    W. Feller. An Introduction to Probability Theory and Its Application, Vol. 2, Wiley, New York, 1965.Google Scholar
  17. 17.
    W. Hoeffding and H. Robbins. The Central Limit Theorem for Dependent Random Variables. Duke Mathematical Journal, 15: 773–780, 1948.MATHMathSciNetGoogle Scholar
  18. 18.
    N. Howgrave-Graham and N. Smart. Lattice Attacks on Digital Signature Schemes. Des. Codes Cryptography, 23: 283–290, 2001.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Intel Platform Security Division. The Intel Random Number Generator. Intel Corporation, 1999.Google Scholar
  20. 20.
    ISO/IEC 18031. Random Bit Generation. November 2005.Google Scholar
  21. 21.
    G. L. Jones. On the Markov Chain Central Limit Theorem. Probability Surveys, 1: 299–320, (2004).MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    G. K. Kanji. 100 Statistical Tests. Sage Publications, London (1995).Google Scholar
  23. 23.
    W. Killmann and W. Schindler. A Proposal for Functionality Classes and Evaluation Methodology for True (Physical) Random Number Generators. Version 3.1 25.09.2001, mathematical-technical reference of [2] (English translation); www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf
  24. 24.
    W. Killmann and W. Schindler. A Design for a Physical RNG with Ro-bust Entropy Estimators, In E. Oswald and P. Rohatgi editors, Cryptographic Hardware and Embedded Systems — CHES 2008. Springer, Lecture Notes in Computer Science, Vol. 5154, pp. 146–163, Berlin, 2008.CrossRefGoogle Scholar
  25. 25.
    D. P. Maher and R. J. Rance. Random Number Generators Founded on Signal and Information Theory. In Ç. K. Koç, C. Paar editors, Cryptographic Hardware and Embedded Systems–-CHES 1999. Springer, Lecture Notes in Computer Science, Vol. 1717, pp. 219–230, Berlin, 1999.Google Scholar
  26. 26.
    S. Mandal and S. Banerjee. An Integrated CMOS Chaos Generator. In S. Banerjee editor, 1st Indian National Conference on Nonlinear Systems & Dynamics–-NCNSD 2003. Kharagpur (India), pp. 313–316, 2003.Google Scholar
  27. 27.
    G. Marsaglia. Diehard (Test Suite for Random Number Generators). www.stat.fsu.edu/ \(\sim\)geo/diehard.html
  28. 28.
    U. Maurer. A Universal Statistical Test for Random Bit Generators. Journal of Cryptology, 5 1992: 89–105.MATHMathSciNetGoogle Scholar
  29. 29.
    A. J. Menezes, P. C. v. Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, Boca Raton (1997).MATHGoogle Scholar
  30. 30.
    J. v. Neumann. Various Techniques for Use in Connection with Random Digits. In A. H. Taub editor, von Neumann Collected Works, Vol. 5, Pergamon Press, London, pp. 768–770, 1963.Google Scholar
  31. 31.
    NIST. Security Requirements for Cryptographic Modules. FIPS PUB 140-1, 11.04.1994. www.itl.nist.gov/fipspubs/fip140-1.htm
  32. 32.
    NIST. Security Requirements for Cryptographic Modules. FIPS PUB 140-2 (25.05.2001) and Change Notice 1, 10.10.2001. csrc.nist.gov/publications/ fips/fips140-2/fips1402.pdfGoogle Scholar
  33. 33.
    NIST. Digital Signature Standard (DSS). FIPS PUB 186-2 (27.01.2000) with Change Notice 1, 5.10.2001. csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdfGoogle Scholar
  34. 34.
    Y. Peres. Iterating von Neumann’s Procedure for Extracting Random Bits. Annals of Statistics, 20, 590–597, 1992.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    J. O. Pliam. The Disparity Between the Work and the Entropy in Cryptology 01.02.1999. eprint.iacr.org/complete/Google Scholar
  36. 36.
    J. O. Pliam. Incompatibility of Entropy and Marginal Guesswork in Brute-Force Attacks. In B. K. Roy, E. Okamoto editors, Indocrypt 2000, Springer, Lecture Notes in Computer Science, Vol. 2177, Berlin 2000, 67–79.Google Scholar
  37. 37.
    A. Rényi. On the Measure of Entropy and Information. In Proc. Fourth Berkeley Symp. Math. Stat. Prob. 1 (1960), University of California Press, Berkeley (1961).Google Scholar
  38. 38.
    A. Rukhin et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800–22 with revisions dated (15.05.2001). csrc.nist.gov/rng/SP800-22b.pdfGoogle Scholar
  39. 39.
    W. Schindler. Functionality Classes and Evaluation Methodology for Deterministic Random Number Generators. Version 2.0 02.12.1999, mathematical-technical reference of [1] (English translation); www.bsi.bund.de/zertifiz/ zert/interpr/ais20e.pdf
  40. 40.
    W. Schindler. Efficient Online Tests for True Random Number Generators. In Ç. K. Koç, D. Naccache, C. Paar editors, Cryptographic Hardware and Embedded Systems–-CHES 2001. Springer, Lecture Notes in Computer Science, Vol. 2162, pp. 103–117, Berlin, 2001.CrossRefGoogle Scholar
  41. 41.
    W. Schindler and W. Killmann. Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications. In B. S. Kaliski Jr., Ç. K. Koç, C. Paar editors, Cryptographic Hardware and Embedded Systems–-CHES 2002, Springer, Lecture Notes in Computer Science vol. 2523, pp. 431–449, Berlin, 2003.CrossRefGoogle Scholar
  42. 42.
    W. Schindler. A Stochastical Model and Its Analysis for a Physical Random Number Generator Presented at CHES 2002. In K. G. Paterson editor, Cryptography and Coding–-IMA 2003, Springer, Lecture Notes in Computer Science 2898, pp. 276–289, Berlin, 2003.CrossRefGoogle Scholar
  43. 43.
    C. Shannon. Mathematical Theory of Communication. Bell System Technology, vol. 27, pp. 379–423, 623–656, 1948.MathSciNetGoogle Scholar
  44. 44.
    T. Tkacik. A Hardware Random Number Generator. In B. S. Kaliski Jr., Ç. K. Koç, C. Paar editors, Cryptographic Hardware and Embedded Systems–-CHES 2002, Springer, Lecture Notes in Computer Science, vol. 2523, pp. 450–453, Berlin, 2003.CrossRefGoogle Scholar
  45. 45.
    A. M. Yaglom. Correlation Theory of Stationary and Related Random Functions, Vol. 1. Springer Series in Statistics, Springer, New York, 1987.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Bundesamt für Sicherheit in der InformationstechnikUSA

Personalised recommendations