Basics of Side-Channel Analysis

References

  1. 1.
    C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier. Pari/GP. Freely available at URL http://pari.math.u-bordeaux.fr
  2. 2.
    M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, 1993.Google Scholar
  3. 3.
    M. Bellare and P. Rogaway. The exact security of digital signatures. In Advances in Cryptology – EUROCRYPT ’96, LNCS vol. 1070, pp. 399–416. Springer, 1996.Google Scholar
  4. 4.
    D. Boneh, G. Durfee, and Y. Frankel. Exposing an RSA private key given a small fraction of its bits. In K. Ohta and D. Pei, editors, Advances in Cryptology – ASIACRYPT ’98, LNCS vol. 1514, pp. 25–34. Springer-Verlag, 1998.CrossRefGoogle Scholar
  5. 5.
    J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-L. Willems. A practical implementation of the timing attack. In J. J. Quisquater and B. Schneier, editors, Smart Card Research and Applications (CARDIS ’98), LNCS, vol. 1820, pp. 167–182. Springer-Verlag, 2000.CrossRefGoogle Scholar
  6. 6.
    G. Hachez and J.-J. Quisquater. Montgomery exponentiation with no final subtractions: Improved results. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2000, LNCS, vol. 1965, pp. 293–301. Springer-Verlag, 2000.CrossRefGoogle Scholar
  7. 7.
    P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor, Advances in Cryptology – CRYPTO ’99, LNCS, vol. 1666, pp. 388–397. Springer-Verlag, 1999.Google Scholar
  8. 8.
    P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96, LNCS, vol. 1109, pp. 104–113. Springer-Verlag, 1996.Google Scholar
  9. 9.
    J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997. Online version available at URL http://www.cacr.math.uwaterloo.ca/hac/
  10. 10.
    P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519–521, 1985.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    National Bureau of Standards. Data encryption standard. Federal Information Processing Standards Publication 46, U.S. Department of Commerce, January 1977.Google Scholar
  12. 12.
    National Institute of Standards and Technology. Advanced Encryption Standard. Federal Information Processing Standards Publication 197, U.S. Department of Commerce, November 2001.Google Scholar
  13. 13.
    R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    C. D. Walter. Montgomery exponentiation needs no final subtractions. Electronics Letters, 35(21):1831–1832, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Thomson R&D FranceAmerica

Personalised recommendations