Block Cipher Modes of Operation from a Hardware Implementation Perspective

  • Debrup Chakraborty
  • Francisco Rodríguez Henríquez

References

  1. 1.
    American National Standard for Financial Services X9.52-1998. Triple Data Encryption Algorithm Modes of Operation. American Bankers Association, Washington, D.C., July 1998.Google Scholar
  2. 2.
    B. Schneier. Applied Cryptography. Wiley, Second edition, 1996.Google Scholar
  3. 3.
    D. Bae, G. Kim, J. Kim, S. Park, and O. Song. An Efficient Design of CCMP for Robust Security Network. In International Conference on Information Security and Cryptology, vol. 3935, pp. 337–346, Seoul, Korea, Springer-Verlag, December 2005.Google Scholar
  4. 4.
    M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, pp. 394–403, Miami Beach, Florida, 1997.Google Scholar
  5. 5.
    M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. In ASIACRYPT ’00: Proceedings of the 6th International Conference on the Theory and Application of Cryptology and Information Security, pp. 531–545, London, UK, Springer-Verlag, 2000.Google Scholar
  6. 6.
    M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In FSE, LNCS vol. 3017, pp. 389–407. Springer, 2004.Google Scholar
  7. 7.
    G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin. Efficient software implementation of AES on 32-bits platforms. In Proceedings of the CHES 2002, LNCS vol. 2523 pp. 159–171. Springer, 2002.Google Scholar
  8. 8.
    D. Canright. A very compact S-Box for AES. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, LNCS, vol. 3659 pp. 441–455. Springer, 2005.Google Scholar
  9. 9.
    A. Canteaut and K. Viswanathan, editors. Progress in Cryptology – INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India, December 20–22, 2004, Proceedings, LNCS, vol. 3348. Springer, 2004.Google Scholar
  10. 10.
    D. Chakraborty and P. Sarkar. A general construction of tweakable block ciphers and different modes of operations. In H. Lipmaa, M. Yung, and D. Lin, editors, Inscrypt, LNCS, vol. 4318 pp. 88–102. Springer, 2006.Google Scholar
  11. 11.
    D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation. In M. J. B. Robshaw, editor, FSE, LNCS, vol. 4047, pp. 293–309. Springer, 2006.Google Scholar
  12. 12.
    D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme using the Hash-Encrypt-Hash approach. In R. Barua and T. Lange, editors, INDOCRYPT, LNCS vol. 4329, pp. 287–302. Springer, 2006.Google Scholar
  13. 13.
    F. Charot, E. Yahya, and C. Wagner. Efficient modular-pipelined AES implementation in counter mode on ALTERA FPGA. In P. Y. K. Cheung, G. A. Constantinides, and J. T. de Sousa, editors, FPL, LNCS, vol. 2778, pp. 282–291, Springer, 2003.Google Scholar
  14. 14.
    W. Diffie and M. Hellman. Privacy and authentication: An introduction to cryptography. Proceedings of the IEEE, 67:397–427, 1979.CrossRefGoogle Scholar
  15. 15.
    D. Whiting, R. Housley, and N. Ferguson. Submission to NIST: Counter with CBC-MAC (CCM) AES mode of operation. Computer Security Division, Computer Security Resource Center (NIST), available at: http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
  16. 16.
    FIPS Publication 46-3. Data Encryption Standard DES. US DOC/NIST, October 1999.Google Scholar
  17. 17.
    FIPS Publication 81. DES Modes of Operation. US DOC/NIST, December 1980.Google Scholar
  18. 18.
    Y. Fu, L. Hao, and X. Zhang. Design of an extremely high performance counter mode AES reconfigurable processor. In Proceedings of the Second International Conference on Embedded Software and Systems (ICESS’05), pp. 262–268. IEEE Computer Society, 2005.Google Scholar
  19. 19.
    B. Gladman. The AES Algorithm (Rijndael) in C and C++, available at:http://fp.gladman.plus.com/cryptography_technology/rijndael/
  20. 20.
    V. D. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB authentication modes. In M. Matsui, editor, FSE 2001, LNCS, vol. 2355, pp. 92–108. Springer, 2001.Google Scholar
  21. 21.
    T. Good and M. Benaissa. AES on FPGA from the fastest to the smallest. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005, 7th International Workshop, Edinburgh, UK, August 29 – September 1, 2005, Proceedings, LNCS, vol. 3659, pp. 427–440. Springer, 2005.Google Scholar
  22. 22.
    S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In Canteaut and Viswanathan, editors, Progress in Cryptology – INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India, December 20–22, 2004, Proceedings, LNCS, vol. 3348, pp. 315–327, Springer, 2004.Google Scholar
  23. 23.
    S. Halevi. TET: A wide-block tweakable mode based on Naor-Reingold. Cryptology ePrint Archive, Report 2007/014, 2007. http://eprint.iacr.org/
  24. 24.
    S. Halevi and P. Rogaway. A tweakable enciphering mode. In D. Boneh, editor, CRYPTO, LNCS vol. 2729, pp. 482–499. Springer, 2003.Google Scholar
  25. 25.
    S. Halevi and P. Rogaway. A parallelizable enciphering mode. In T. Okamoto, editor, CT-RSA, LNCS vol. 2964, pp. 292–304. Springer, 2004.Google Scholar
  26. 26.
    S. F. Hsiao and M. C. Chen. Efficient substructure sharing methods for optimising the inner-product operations in Rijndael Advanced Encryption Standard. IEE Proceedings on Computer and Digital Technology, 152(5):653–665, September 2005.Google Scholar
  27. 27.
    T. Ichikawa, T. Kasuya, and M. Matsui. Hardware evaluation of the AES finalists. In The Third AES3 Candidate Conference, pp. 279–285, New York, April 2000.Google Scholar
  28. 28.
    J. Daemen and V. Rijmen. The Design of Rijndael: AES The Advanced Encryption Standard. Springer-Verlag, First edition, 2002.Google Scholar
  29. 29.
    C. S. Jutla. Encryption modes with almost free message integrity. Cryptology ePrint Archive, Report 2000/039, 2000. http://eprint.iacr.org/
  30. 30.
    C. S. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann, editor, EUROCRYPT, LNCS, vol. 2045, pp. 529–544. Springer, 2001.Google Scholar
  31. 31.
    T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated encryption mode. Cryptology ePrint Archive, Report 2003/106, 2003. http://eprint.iacr.org/
  32. 32.
    H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST concerning AES Modes of Operations: CTR-mode encryption, September 2000, available at: http://www.cs.ucdavis.edu/rogaway/papers/ctr.pdf.
  33. 33.
    M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology Conference on Advances in Cryptology, pp. 31–46, London, UK, Springer-Verlag, 2002.Google Scholar
  34. 34.
    E. López-Trejo, F. R. Henríquez, and A. Díaz-Pérez. An Efficient FPGA Implementation of CCM mode using AES. In International Conference on Information Security and Cryptology, LNCS, vol. 3935, pp. 208–215, Seoul, Korea, Springer-Verlag, December 2005.Google Scholar
  35. 35.
    M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal of Computing, 17(2):373–386, 1988.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    A. K. Lutz, J. Treichler, F. K. Gurkaynak, H. Kaeslin, G. Basler, A. Erni, S. Reichmuth, P. Rommens, S. Oetiker, and W. Fitchtner. 2 Gbits/s Hardware realization of RIJNDAEL and SERPENT-A comparative analysis. In Proceedings of the CHES 2002, LNCS, vol. 2523, pp. 171–184. Springer, 2002.Google Scholar
  37. 37.
    C. Mancillas-López, D. Chakraborty, and F. Rodríguez-Henríquez. Efficient implementations of some tweakable enciphering schemes in reconfigurable hardware. In K. Srinathan, C. P. Rangan, and M. Yung, editors, INDOCRYPT, LNCS, vol. 4859, pp. 414–424. Springer, 2007.Google Scholar
  38. 38.
    C. Mancillas-Lopez, D. Chakraborty, and F. Rodriguez-Henriquez. Reconfigurable hardware implementations of tweakable enciphering schemes. Cryptology ePrint Archive, Report 2007/437, 2007. http://eprint.iacr.org/
  39. 39.
    D. A. McGrew and S. R. Fluhrer. The Extended Codebook (XCB) mode of operation. Cryptology ePrint Archive, Report 2004/278, 2004. http://eprint.iacr.org/
  40. 40.
    D. A. McGrew and J. Viega. Arbitrary block length mode, 2004, available at: http://grouper.ieee.org/groups/1619/email/pdf00005.pdf
  41. 41.
    D. A. McGrew and J. Viega. The security and performance of the Galois/Counter Mode (GCM) of operation. In Canteaut and Viswanathan, editors, Progress in Cryptology – INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India, December 20–22, 2004, Proceedings, LNCS, vol. 3348, pp. 343–355. Springer, 2004.Google Scholar
  42. 42.
    M. Dworkin. Recommendation for Block Cipher Modes of operation methods and techniques. National Institute of Standards and Technology (NIST), December 2001 available at: http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
  43. 43.
    M. Dworkin. Recommendation for Block Cipher Modes of Operation: The CCM Mode for authentication and confidentiality. National Institute of Standards and Technology (NIST), May 2004, available at: http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf
  44. 44.
    M. Naor and O. Reingold. A pseudo-random encryption mode. Manuscript available at: www.wisdom.weizmann.ac.il/ \(\sim \)naor
  45. 45.
    M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. Journal of Cryptology, 12(1):29–66, 1999.Google Scholar
  46. 46.
    NIST Special Publication 800-38A 2001 edition. Recommendation for Block Cipher Modes of Operation. US NIST, December 2001.Google Scholar
  47. 47.
    F. Rodríguez-Henríquez, N. A. Saqib, and A. Díaz-Pérez. 4.2 Gbit/s single-chip FPGA implementation of AES algorithm. IEE Electron. Lett., 39(15):1115–1116, July 2003.Google Scholar
  48. 48.
    P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In P. J. Lee, editor, ASIACRYPT, LNCS, vol. 3329, pp. 16–31. Springer, 2004.Google Scholar
  49. 49.
    P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and W. Meier, editors, FSE, LNCS vol. 3017, pp. 348–359. Springer, 2004.Google Scholar
  50. 50.
    P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient authenticated encryption. ACM Transaction on Information Systems Security, 6(3):365–403, 2003.CrossRefGoogle Scholar
  51. 51.
    A. Rudra, P. K. Dubey, C. S. Julta, V. Kumar, J. R. Rao, and P. Rohatgi. Efficient Rijndael encryption implementation with composite field arithmetic. In Proceedings of the CHES 2001, LNCS, vol. 2162, pp. 171–184. Springer, 2001.Google Scholar
  52. 52.
    P. Sarkar. Improving upon the TET mode of operation. In K.-H. Nam and G. Rhee, editors, ICISC, LNCS, vol. 4817, pp. 180–192. Springer, 2007.Google Scholar
  53. 53.
    W. Trappe and L. C. Washington. Introduction to Cryptography with Coding Theory. Prentice Hall, First edition, 2002.Google Scholar
  54. 54.
    P. Wang, D. Feng, and W. Wu. HCTR: A variable-input-length Enciphering mode. In D. Feng, D. Lin, and M. Yung, editors, CISC, LNCS, vol. 3822, pp. 175–188. Springer, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Debrup Chakraborty
    • 1
  • Francisco Rodríguez Henríquez
  1. 1.CINVESTAV IPNMexico

Personalised recommendations