Dynamic And Stochastic Vehicle Routing In Practice

  • Truls Flatberg
  • Geir Hasle
  • Oddvar Kloster
  • Eivind J. Nilssen
  • Atle Riise
Part of the Operations Research/Computer Science Interfaces Series book series (ORCS, volume 38)


The VRP is a key to efficient transportation logistics. It is a computationally very hard problem. Whereas classical OR models are static and deterministic, these assumptions are rarely warranted in an industrial setting. Lately, there has been an increased focus on dynamic and stochastic vehicle routing in the research community. However, very few generic routing tools based on stochastic or dynamic models are available. We illustrate the need for dynamics and stochastic models in industrial routing, describe the Dynamic and Stochastic VRP, and how we have extended a generic VRP solver to cope with dynamics and uncertainty


Logistics Transportation Vehicle Routing Dynamic Stochastic Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attanasio, A., Cordeau, J. F., Ghiani, G. and Laporte, G., 2004, Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem, Parallel Computing 30(3): 377-387.CrossRefGoogle Scholar
  2. Bent, R. and Van Hentenryck, P., 2003, Dynamic Vehicle Routing with Stochastic Requests, Technical Report, Technical Report, Department of Computer Science, Brown University.Google Scholar
  3. Bent, R. and Van Hentenryck, P., 2004, Scenario-based planning for partially dynamic vehicle routing with stochastic customers, Operations Research 52(6): 977-987.CrossRefGoogle Scholar
  4. Bräysy, O., Gendreau, M., Hasle, G. and Løkketangen, A., 2005a, A Survey of Heuristics for the Vehicle Routing Problem, Part I: Basic Problems and Supply Side Extensions, SINTEF Report, Oslo, Norway.Google Scholar
  5. Bräysy, O., Gendreau, M., Hasle, G. and Løkketangen, A.,2005b, A Survey of Heuristics for the Vehicle Routing Problem, Part II: Demand Side Extensions, SINTEF Report, Oslo, Norway.Google Scholar
  6. Dantzig, G. B. and Ramser, J. H.,1959, The truck dispatching problem, Management Science 6: 80.CrossRefGoogle Scholar
  7. Dror, M., Laporte, G. and Trudeau, P.,1989, Vehicle routing with stochastic demands: properties and solution frameworks, Transportation Science 23: 166-176.Google Scholar
  8. Flatberg, T., Hasle, G., Kloster, O., Nilssen, E. J. and Riise, A.,2005, Dynamic and Stochastic Aspects in Vehicle Routing - A Literature Survey, SINTEF Technical Report STF90A05413.Google Scholar
  9. Fleischmann, B., Gnutzmann, S. and Sandvoß, E., 2004, Dynamic Vehicle Routing Based on Online Traffic Information, Transportation Science 38(4): 420-433.CrossRefGoogle Scholar
  10. Gendreau, M., Laporte, G. and Sèguin, R., 1996, Stochastic vehicle routing, European Journal of Operational Research 88: 3-12.CrossRefGoogle Scholar
  11. Giaglis, G. M., Minis, I., Tatarakis, A. and Zeimpekis, V., 2004, Minimizing logistics risk through real-time vehicle routing and mobile technologies: Research to date and future trends, International Journal of Physical Distribution & Logistics Management 34(9): 749-764.CrossRefGoogle Scholar
  12. Hansen, P. and Mladenovic, N.,1999, An Introduction to Variable Neighborhood Search, in: Metaheuristics, Advances and Trends in Local Search Paradigms for Optimization, S. Voss et al, eds., Dordrecht, Kluwer.Google Scholar
  13. Heckerman, D.,1995, A Tutorial on Learning Bayesian Networks, Technical Report, Microsoft Research.Google Scholar
  14. Horn, M. E. T., 2000, Fleet scheduling and dispatching for demand-responsive passenger services, Transportation Research Part C 10.Google Scholar
  15. Hvattum, L. M., Løkketangen, A. and Laporte, G.,2006, A branch-and-prune heuristic for stochastic and dynamic vehicle routing, Working paper.Google Scholar
  16. Ichoua, S., Gendreau, M. and Potvin, J.-Y., 2000, Diversion Issues in real-time vehicle dispaching, Transportation Science 34(4): 426-438.CrossRefGoogle Scholar
  17. Ichoua, S., Gendreau, M. and Potvin, J.-Y., 2005, Exploiting knowledge about future demands for real-time vehicle dispatching, Transportation Science Forthcoming.Google Scholar
  18. Larsen, A.,2000, The Dynamic Vehicle Routing Problem, PhD Thesis, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.Google Scholar
  19. Larsen, A., Madsen, O. and Solomon, M., 2002, Partially dynamic vehicle routing - models and algorithms, Journal of the Operational Research Society 53: 637-646.CrossRefGoogle Scholar
  20. Lourenço, H. R., Martin, O. C. and T., S.,2003, Iterated Local Search, in: Handbook of Metaheuristics, F. Glover and G. Kochenberger, eds., Kluwer, pp. 321-354.Google Scholar
  21. Lund, K., Madsen, O. B. G. and Rygaard, J. M.,1996, Vehicle routing problems with varying degree of dynamism, Technical Report, IMM, Department of Mathematical Modelling, Technical University of Denmark.Google Scholar
  22. Madsen, O., Ravn, H. F. and Rygaard, J. M., 1995, A heuristics algorithm for a dial-a-ride problem with time windows, multiple capacities, and multiple objectives, Annals of Operations Research 60: 193-208.CrossRefGoogle Scholar
  23. Mitrovic-Minic, S., Krishnamurti, R. and Laporte, G., 2004, Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows, Transportation Research Part B 38: 669-685.CrossRefGoogle Scholar
  24. Mitrovic-Minic, S. and Laporte, G., 2004, Waiting strategies for the dynamic pickup and delivery problem with time windows, Transportation Research Part B 38: 635-655.CrossRefGoogle Scholar
  25. Powell, W. B., Jaillet, P. and Odoni, A.,1995, Stochastic and dynamic networks and routing, in: Handbooks in operations research and management science 8: Network Routing, M. O. Ball et al., eds., Amsterdam, Elsevier, pp. 141-295.Google Scholar
  26. Powell, W. B. and Topaloglu, H.,2003, Stochastic Programming in Transportation and Logistics, in: Handbooks in Operations Research and Management Science: Stochastic Programming, A. Shapiro and A. Ruszczynski, eds., Amsterdam, Elsevier.Google Scholar
  27. Psaraftis, H. N.,1988, Dynamic vehicle routing problems, in: Vehicle routing: methods and studies, B. Golden and A. Assad, eds., Amsterdam, Elsevier Science Publishers, pp. 223-248.Google Scholar
  28. Psaraftis, H. N., 1995, Dynamic vehicle routing: status and prospects, Annals of Operational Research 61: 143-164.CrossRefGoogle Scholar
  29. Regan, A. C., Mahmassani, H. S. and P., J., 1998, Evaluation of dynamic fleet management systems: Simulation Framework, Transportation Research Record(1645).Google Scholar
  30. Savelsbergh, M. and Sol, M., 1998, DRIVE: Dynamic routing of independent vehicles, Operations Research 46: 474-490.Google Scholar
  31. Thomas, B. W. and White III, C. C., 2004, Anticipatory route selection, Transportation Science 38(4): 473-487.CrossRefGoogle Scholar
  32. Toth, P. and Vigo, D., eds., 2002, The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia.Google Scholar
  33. Van Hentenryck, P., Bent, R. and Upfal, E.,2006, Online Stochastic Optimization Under Time Constraints, Working Paper.Google Scholar
  34. Yang, J., Jaillet, P. and Mahmassani, H., 2004, Real-time multivehicle truckload pickup and delivery problems, Transportation Science 38(2): 135-148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Truls Flatberg
    • 1
  • Geir Hasle
    • 1
  • Oddvar Kloster
    • 1
  • Eivind J. Nilssen
    • 1
  • Atle Riise
    • 1
  1. 1.SINTEF Applied MathematicsN-0314 OsloNorway

Personalised recommendations