Automatic Extraction of Deceptive Behavioral Cues from Video

Part of the Integrated Series In Information Systems book series (ISIS, volume 18)

This chapter provides an overview of an initial investigation into a novel approach for deriving indicators of deception from video-taped interactions. The team utilized two-dimensional spatial inputs extracted from video to construct a set of discrete and inter-relational features. The features for thirty-eight video interactions were then analyzed using discriminant analysis. Additionally, features were used to build a multivariate regression model. Through this exploratory research, the team established the validity of the approach and identified a number of promising features and future research directions.


Nonverbal Behavior Angular Movement Automatic Extraction Truth Teller Deception Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ben-Shakhar, G. and E. Elaad (2003). "The Validity of Psychophysiological Detection of Information with the Guilty Knowledge Test: A Meta-Analytic Review." Journal of Applied Psychology 88(1): 131-151.CrossRefGoogle Scholar
  2. Buller, D., J. Burgoon, et al. (1994). "Interpersonal Deception: VII. Behavioral Profiles of Falsification, Equivocation and Concealment." Journal of Language and Social Psychology 13(4): 366-395.CrossRefGoogle Scholar
  3. Buller, D. B. and J. K. Burgoon (1994). Deception: Strategic and nonstrategic communication. Strategic interpersonal communication. J. A. Daly and J. M. Wiemann. Hillsdale, NJ, Erlbaum: 191-223.Google Scholar
  4. Buller, D. B. and J. K. Burgoon (1996). "Interpersonal Deception Theory." Communication Theory 6: 203-242.CrossRefGoogle Scholar
  5. Burgoon, J. K., M. Adkins, et al. (2005). An Approach for Intent Identification by Building on Deception Detection. Hawaii International Conference on System Science (HICSS'05), Hawaii.Google Scholar
  6. Burgoon, J. K., J. P. Blair, et al. (2003). Effects of Communication Modality on Arousal, Cognitive Complexity, Behavioral Control and Deception Detection During Deceptive Episodes. Annual Meeting of the National Communication Association, Miami Beach, Florida.Google Scholar
  7. Burgoon, J. K., J. P. Blair, et al. (2003). Detecting Deception through Linguistic Analysis. NSF/NIJ Symposium on Intelligence and Security Informatics.Google Scholar
  8. DePaulo, B., J. Lindsay, et al. (2003). "Cues To Deception." Psychological Bulletin 129(1): 74-118.CrossRefGoogle Scholar
  9. Duda, R. O., P. E. Hart, et al. (2001). Pattern Classification. New York, Wiley.Google Scholar
  10. Ekman, P. and W. V. Friesen (1969). "Nonverbal Leakage and Clues to Deception." Psychiatry 32: 88-105.Google Scholar
  11. Ganis, G., S. M. Kosslyn, et al. (2003). "Neural Correlates of Different Types of Deception: An fMRI Investigation." Cerebral Cortex 13(8): 830-836.CrossRefGoogle Scholar
  12. Izzetoglu, K., G. Yurtsever, et al. (2003). NIR spectroscopy measurements of cognitive load elicited by GKT and target categorization.Google Scholar
  13. Jensen, M. L., T. O. Meservy, et al. (2005). Identification of Deceptive Behavioral Cues Extracted from Video. International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria.Google Scholar
  14. Johnson, R., J. Barnhardt, et al. (2004). "The contribution of executive processes to deceptive responding." Neuropsychologia 42: 878-901.CrossRefGoogle Scholar
  15. Levine, T. R., T. H. Feeley, et al. (2005). "Testing the Effects of Nonverbal Behavior Training on Accuracy in Deception Detection with the Inclusion of a Bogus Training Control Group." Western Journal of Communication 69(3): 203-217.CrossRefGoogle Scholar
  16. Lu, S., G. Tsechpenakis, et al. (2005). Blob Analysis of the Head and Hands: A Method for Deception Detection. Hawaii International Conference on System Science (HICSS'05), Hawaii.Google Scholar
  17. Maruven, M. and R. F. Baumeister (2000). "Self-Regulation and Depletion of Limited Resources: Does Self-Control Resemble a Muscle." Psyhcological Bulletin 126(2): 247.CrossRefGoogle Scholar
  18. Masip, J., E. Garrido, et al. (2004). "Defining deception." Anales de Psicología 20(1): 147-171.Google Scholar
  19. Meservy, T., M. L. Jensen, et al. (2005). "Deception Detection through Automatic, Unobtrusive Analysis of Nonverbal Behavior." IEEE Intelligent Systems (September/October).Google Scholar
  20. Meservy, T. O., M. L. Jensen, et al. (2006). Detecting Deception in a Security Screening Scenario. Thirty-Ninth Annual Hawaii International Conference on System Sciences (CD/ROM), Kauai, Hawaii, IEEE Computer Society Press.Google Scholar
  21. Schacter, D. L., K. A. Norman, et al. (1998). "The cognitive neuroscience of constructive memory." Annual Review of Psychology 49(30): 289.CrossRefGoogle Scholar
  22. Tippett, R. G. (1994). "A Comparison Between Decision Accuracy Rates Obtained Using the Polygraph Instrument and the Computer Voice Stress Analyzer in the Absence of Jeopardy." Retrieved September, 2003, from:
  23. Villringer, A. (1993). "Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults." Neuroscience Letters 154: 101.CrossRefGoogle Scholar
  24. Vrij, A. (2000). Detecting Lies and Deceit: The Psychology of Lying and the Implications for Professional Practice. West Sussex, John Wily & Sons Ltd.Google Scholar
  25. Vrij, A., K. Edward, et al. (2000). "Detecting Deceit via Analysis of Verbal and Nonverbal Behavior." Journal of Nonverbal Behavior 24(4): 239 - 263.CrossRefGoogle Scholar
  26. Zuckerman, M., B. M. DePaulo, et al. (1981). Verbal and nonverbal communication of deception. Advances in Experimental Social Psychology. L. Berkowitz. New York, Academic: 1-59.Google Scholar
  27. Zuckerman, M. and R. E. Driver (1985). Telling Lies: Verbal and Nonverbal Correlates of Deception. Nonverbal Communication: An Integrated Perspective. A. W. Siegman and S. Feldstein. Hillsdale, NJ, Erlbaum: 129-147.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Management Information Systems DepartmentUniversity of ArizonaTucsonUSA

Personalised recommendations