Skip to main content

Potential Applications of Glycosaminoglycan-Related Compounds in Alzheimer's Disease

  • Chapter
Pharmacological Mechanisms in Alzheimer's Therapeutics

Amyloid refers to extracellular proteinaceous fibrillar tissue deposits having a unique set of morphologic, tinctorial, ultrastructural, and protein-folding characteristics (Kisilevsky, 1996). Up to now, more than 25 amyloid proteins or peptides have been identified, each being associated with one type of amyloid deposit (for a review see: Westermark et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aisen, P. S. (2005). The development of anti-amyloid therapy for Alzheimer's disease: From secretase modulators to polymerisation inhibitors. CNS Drugs, 19, 989–996.

    PubMed  CAS  Google Scholar 

  • Aisen, P. S., Gauthier, S., Vellas, B., Briand, R., Saumier, D., Laurin, J., et al. (2006). Alzhemed: A potential treatment for Alzheimer's disease (AD). Current Alzheimer Research (in press).

    Google Scholar 

  • Aisen, P. A., Mehran, M., Poole, R., Lavoie, I., Gervais, F., Briand, R., et al. (2004).01–05-06 Clinical data on Alzhemed™ after 12 months of treatment in patients with mild to moderate Alzheimer's disease. Neurobiology of Aging, 25, Supplement 2, S20.

    Google Scholar 

  • Aisen, P. S., Saumier, D., Briand, R., Laurin, J., Gervais, F., Tremblay, P., et al. (2006). A phase II study targeting amyloid β with 3APS in mild-to-moderate Alzheimer's disease. Neurology, 67, 1757–1763.

    PubMed  CAS  Google Scholar 

  • Ancsin, J. B. (2003). Amyloidogenesis: Historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid, 10, 67–79.

    PubMed  CAS  Google Scholar 

  • Bame, K. J., Danda, J., Hassall, A., & Tumova, S. (1997). Aβ(1–40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer's disease. The Journal of Biological Chemistry, 272, 17005–17011.

    PubMed  CAS  Google Scholar 

  • Ban, T. A., Morey, L. C., Aguglia, E., Batista, R., Campanella, G., Conti, L., et al. (1991). Glycosaminoglycan polysulfate in the treatment of old age dementias. Progress in Neuro-psychopharmacology and Biological Psychiatry, 15, 323–342.

    PubMed  CAS  Google Scholar 

  • Bergamaschini, L., Donarini, C., Rossi, E., De Luigi, A., Vergani, C., & de Simoni, M. G. (2002). Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-beta in vitro. Neurobiology of Aging, 23, 531–536.

    PubMed  CAS  Google Scholar 

  • Bergamaschini, L., Rossi, E., Storini, C., Pizzimenti, S., Distaso, M., Perego, C., et al. (2004). Peripheral treatment with enoxaparin, a low molecular weight heparin, reduces plaques and beta-amyloid accumulation in a mouse model of Alzheimer's disease. The Journal of Neuroscience, 24, 4181–4186.

    PubMed  CAS  Google Scholar 

  • Berkin, A., Szarek, W. A., & Kisilevsky, R. (2000). Synthesis of 4-deoxy-4-fluoro analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-galactose and their effects on cellular glycosaminoglycan biosynthesis. Carbohydrate Research, 326, 250–263.

    PubMed  CAS  Google Scholar 

  • Berkin, A., Szarek, W. A., & Kisilevsky, R. (2002). Synthesis and biological evaluation of a radiolabeled analog of methyl 2-acetamido-2, 4-dideoxy-beta-D-xylo-hexopyranoside directed towards influencing cellular glycosaminoglycan biosynthesis. Carbohydrate Research, 337, 37–44.

    PubMed  CAS  Google Scholar 

  • Berkin, A., Szarek, M. A., Plenkiewicz, J., Szarek, W. A., & Kisilevsky, R. (2000). Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis. Carbohydrate Research, 325, 30–45.

    PubMed  CAS  Google Scholar 

  • BuĂ©e, L., Ding, W., Anderson, J. P., Narindrasorasak, S., Kisilevsky, R., Boyle, N. J., et al. (1993). Binding of vascular heparan sulfate proteoglycan to Alzheimer's amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide. Brain Research, 627, 199–204.

    PubMed  Google Scholar 

  • Capila, I., & Linhardt, R. J. (2002). Heparin-protein interactions. Angewandte Chemie (International Ed. in English), 41, 391–412.

    Google Scholar 

  • Castillo, G. M., Lukito, W., Wight, T. N., & Snow, A. D. (1999). The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. Journal of Neurochemistry, 72, 1681–1687.

    PubMed  CAS  Google Scholar 

  • Castillo, G. M., Ngo, C., Cummings, J., Wight, T. N., & Snow, A. D. (1997). Perlecan binds to the β-amyloid proteins (Aβ) of Alzheimer's disease, accelerates Aβ fibril formation, and maintains Aβ fibril stability. Journal of Neurochemistry, 69, 2452–2465.

    PubMed  CAS  Google Scholar 

  • Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., et al. (2001). Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. The Journal of Biological Chemistry, 276, 21562–21570.

    PubMed  CAS  Google Scholar 

  • Clarris, H. J., Cappai, R., Heffernan, D., Beyreuther, K., Masters, C. L., & Small, D. H. (1997). Identification of heparin-binding domains in the amyloid precursor protein of Alzheimer's disease by deletion mutagenesis and peptide mapping. Journal of Neurochemistry, 68, 1164–1172.

    PubMed  CAS  Google Scholar 

  • Conti, L., Re, F., Lazzerini, F., Morey, L. C., Ban, T. A., Santini, V., et al. (1989). Glycosaminoglycan polysulfate (Ateroid) in old-age dementias: Effects upon depressive symptomatology in geriatric patients. Progress in Neuro-psychopharmacology and Biological Psychiatry, 13, 977–981.

    PubMed  CAS  Google Scholar 

  • Coombe, D. R., & Kett, W. C. (2005). Heparan sulfate-protein interactions: Therapeutic potential through structure-function insights. Cellular and Molecular Life Sciences, 62, 410–424.

    PubMed  CAS  Google Scholar 

  • Cornelli, U. (1996). Non-anticoagulant actions of glycosaminoglycans (GAGs). The therapeutical approach to Alzheimer's disease. In J. Harenberg & B. Casu (Eds.), Nonanticoagulant actions of glycosaminoglycans (pp. 249–279). New York: Plenum Press.

    Google Scholar 

  • Cornelli, U., Hanin, I., Lorens, S., Fareed, J., Lee, J., Mervis, R., et al. (2002). Historical overview of glycosaminoglycans (GAGs) and their potential value in the treatment of Alzheimer's disease. In Y. Mizuno, A. Fisher, & I. Hanin (Eds.), Mapping and progress of Alzheimer's and Parkinson's disease (Advances in Behavioral Biology, 51) (pp. 145–155). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Cotman, S. L., Halfter, W., & Cole, G. J. (2000). Agrin binds to beta-amyloid (Abeta), accelerates Abeta fibril formation, and is localized to Abeta deposits in Alzheimer's disease brain. Molecular and Cellular Neurosciences, 15, 183–198.

    PubMed  CAS  Google Scholar 

  • DeWitt, D. A., Silver, J., Canning, D. R., & Perry, G. (1993). Chondroitin sulfate proteoglycans are associated with the lesions of Alzheimer's disease. Experimental Neurology, 121, 149–152.

    PubMed  CAS  Google Scholar 

  • Diaz-Nido, J., Wandosell, F., & Avila, J. (2002). Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides, 23, 1323–1332.

    PubMed  CAS  Google Scholar 

  • Dudas, B., Cornelli, U., Lee, J. M., Hejna, M. J., Walzer, M., Lorens, S. A., et al. (2002). Oral and subcutaneous administration of the glycosaminoglycan C3 attenuates Abeta(25–35)-induced abnormal tau protein immunoreactivity in rat brain. Neurobiology of Aging, 23, 97–104.

    PubMed  CAS  Google Scholar 

  • Dudas, B., Rose, M., Cornelli, U., & Hanin, I. (2005). Low molecular weight glycosaminoglycan C3 attenuates AF64A-stimulated, low-affinity nerve growth factor receptor-immunoreactive axonal varicosities in the rat septum. Brain Research, 1033, 34–40.

    PubMed  CAS  Google Scholar 

  • Fraser, P. E., Darabie, A. A., & McLaurin, J. A. (2001). Amyloid-beta interactions with chondroitin sulfate-derived monosaccharides and disaccharides. Implications for drug development. The Journal of Biological Chemistry, 276, 6412–6419.

    PubMed  CAS  Google Scholar 

  • Fraser, P. E., Nguyen, J. T., Chin, D. T., & Kirschner, D. A. (1992). Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: Implications for amyloid fibril-proteoglycan interactions. Journal of Neurochemistry, 59, 1531–1540.

    PubMed  CAS  Google Scholar 

  • Geerts, H. (2004). NC-531 (Neurochem). Current Opinion in Investigational Drugs, 5, 95–100.

    PubMed  CAS  Google Scholar 

  • Gervais, F., Chalifour, R., Garceau, D., Kong, X., Laurin, J., McLaughlin, R., et al. (2001). Glycosaminoglycan mimetics: a therapeutic approach to cerebral amyloid angiopathy. Amyloid, 8, 28–35.

    PubMed  CAS  Google Scholar 

  • Gervais, F., Garceau, D., Aisen, P. S., & Gauthier, S. (2006). Glycosaminoglycan mimetics in Alzheimer's disease. In S. Gauthier, P. Scheltens, & J. L. Cummings (Eds.), Alzheimer's disease and related disorders annual 5 (pp. 63–72). London: Taylor & Francis.

    Google Scholar 

  • Gervais, F., Morissette, C., & Kong, X. (2003). Proteoglycans and amyloidogenic proteins in peripheral amyloidosis. Current Medicinal Chemistry (IEMA), 3, 361–370.

    CAS  Google Scholar 

  • Gervais, F., Paquette, J., Morissette, C., Krzywkowski, P., Yu, M., Azzi, M., et al. (2007). Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiology of Aging, 28, 537–547.

    PubMed  CAS  Google Scholar 

  • Glenner, G. G., & Wong, C. W. (1984). Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120, 885–890.

    PubMed  CAS  Google Scholar 

  • Goedert, M., Jakes, R., Spillantini, M. G., Hasegawa, M., Smith, M. J., & Crowther, R. A. (1996). Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature, 383, 550–553.

    PubMed  CAS  Google Scholar 

  • Guo, X., Xin, X., Gan, L., Nie, Q., & Geng, M. (2006). Determination of the accessibility of acidic oligosaccharide sugar chain to blood-brain barrier using surface plasmon resonance. Biological & Pharmaceutical Bulletin, 29, 60–63.

    CAS  Google Scholar 

  • Gupta-Bansal, R., Frederickson, R. C. A., & Brunden, K. R. (1995). Proteoglycan-mediated inhibition of A beta proteolysis. A potential cause of senile plaque accumulation. The Journal of Biological Chemistry, 270, 18666–18671.

    PubMed  CAS  Google Scholar 

  • Hanin, I., Dudas, B., Mervis, R. F., Cornelli, U., Lee, J. M., Lorens, S. A, et al. (2002). C3, a promising ultra low molecular weight glycosaminoglycan for the treatment of Alzheimer's disease. In Y. Mizuno, A. Fisher, & I. Hanin (Eds.), Mapping and progress of Alzheimer's and Parkinson's disease (Advances in Behavioral Biology, 51) (pp. 171–176). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Hasegawa, M., Crowther, R. A., Jakes, R., & Goedert, M. (1997). Alzheimer-like changes in microtubule-associated protein Tau induced by sulfated glycosaminoglycans. Inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. The Journal of Biological Chemistry, 272, 33118–33124.

    PubMed  CAS  Google Scholar 

  • van Horssen, J., Otte-Holler, I., David, G., Maat-Schieman, M. L., van den Heuvel, L. P., Wesseling, P., et al. (2001). Heparan sulfate proteoglycan expression in cerebrovascular amyloid beta deposits in Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathologica, 102, 604–614.

    PubMed  Google Scholar 

  • van Horssen, J., Wesseling, P., van den Heuvel, L. P., De Waal, R. M., & Verbeek, M. M. (2003). Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. Lancet Neurology, 2, 482–492.

    PubMed  Google Scholar 

  • van Horssen, J., Wilhelmus, M. M., Heljasvaara, R., Pihlajaniemi, T., Wesseling, P., De Waal, R. M., et al. (2002). Collagen XVIII: A novel heparan sulfate proteoglycan associated with vascular amyloid depositions and senile plaques in Alzheimer's disease brains. Brain Pathology, 12, 456–462.

    PubMed  Google Scholar 

  • Hu, J., Geng, M., Li, J., Xin, X., Wang, J., Tang, M., et al. (2004). Acidic oligosaccharide sugar chain, a marine-derived acidic oligosaccharide, inhibits the cytotoxicity and aggregation of amyloid beta protein. Journal of Pharmacological Sciences, 95, 248–255.

    PubMed  CAS  Google Scholar 

  • Iozzo, R. V. (1998). Matrix proteoglycans: From molecular design to cellular function. Annual Review of Biochemistry, 67, 609–652.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R. (1996). Anti-amyloid drugs: Potential in the treatment of diseases associated with aging. Drugs Aging, 8, 75–83.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R. (1997). Can deposition of amyloid be prevented in Alzheimer's disease? Annals of the New York Academy of Sciences, 856, 117–127.

    Google Scholar 

  • Kisilevsky, R., & Fraser, P. (1996). Proteoglycans and amyloid fibrillogenesis. In G. Bock & J. Goode (Eds.), The nature and origin of amyloid fibrils—No. 199 (pp. 58–67). Chichester: John Wiley & Sons, Inc.

    Google Scholar 

  • Kisilevsky, R., Lemieux, L. J., Fraser, P. E., Kong, X., Hultin, P. G., & Szarek, W. A. (1995). Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates: Implications for Alzheimer's disease. Nature Medicine, 1, 143–148.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R., & Szarek, W. A. (2002). Novel glycosaminoglycan precursors as anti-amyloid agents part II. Journal of Molecular Neuroscience, 19, 45–50.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R., Szarek, W. A., Ancsin, J., Bhat, S., Li, Z., & Marone, S. (2003). Novel glycosaminoglycan precursors as anti-amyloid agents, part III. Journal of Molecular Neuroscience, 20, 291–297.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R., Szarek, W. A., Ancsin, J. B., Elimova, E., Marone, S., Bhat, S., et al. (2004). Inhibition of amyloid A amyloidogenesis in vivo and in tissue culture by 4-deoxy analogues of peracetylated 2-acetamido-2-deoxy-alpha- and beta-d-glucose: Implications for the treatment of various amyloidoses. The American Journal of Pathology, 164, 2127–2137.

    PubMed  CAS  Google Scholar 

  • Kisilevsky, R., Szarek, W. A., Ancsin, J., Vohra, R., Li, Z., & Marone, S. (2004). Novel glycosaminoglycan precursors as antiamyloid agents: Part IV. Journal of Molecular Neuroscience, 24, 167–172.

    PubMed  CAS  Google Scholar 

  • Kjellen, L., & Lindahl, U. (1991). Proteoglycans: Structures and interactions. Annual Review of Biochemistry, 60, 443–475.

    PubMed  CAS  Google Scholar 

  • Lammi, M. (2006). Proteoglycans. University of Kuipio, Department of Anatomy, Kuopio. ISI Current Web Contents TM, Accessed: May 25, 2006. http://www.uku.fi/laitokset/anat/PG/intro.htm.

  • Lee, H. G., Castellani, R. J., Zhu, X., Perry, G., & Smith, M. A. (2005). Amyloid-beta in Alzheimer's disease: The horse or the cart? Pathogenic or protective? International Journal of Experimental Pathology, 86, 133–138.

    PubMed  CAS  Google Scholar 

  • Leveugle, B., Ding, W., Durkin, J. T., Mistretta, S., Eisle, J., Matic, M., et al. (1997). Heparin promotes β-secretase cleavage of the Alzheimer's amyloid precursor protein. Neurochemistry International, 30, 543–548.

    PubMed  CAS  Google Scholar 

  • Leveugle, B., Ding, W., Laurence, F., Dehouck, M. P., Scanameo, A., Cecchelli, R., et al. (1998). Heparin oligosaccharides that pass the blood-brain barrier inhibit β-amyloid precursor protein secretion and heparin binding to β-amyloid peptide. Journal of Neurochemistry, 70, 736–744.

    Article  PubMed  CAS  Google Scholar 

  • Leveugle, B., & Fillit, H. (1994). Proteoglycans and the acute-phase response in Alzheimer's disease brain. Molecular Neurobiology, 9, 25–32.

    PubMed  CAS  Google Scholar 

  • Lindahl, B., Eriksson, L., Spillmann, D., Caterson, B., & Lindahl, U. (1996). Selective loss of cerebral keratan sulfate in Alzheimer's disease. The Journal of Biological Chemistry, 271, 16991–16994.

    PubMed  CAS  Google Scholar 

  • Lindahl, U., & Roden, L. (1972). Carbohydrate-peptide linkages in proteoglycans of animal, plant and bacterial origin. In A. Gottschalk (Ed.), Glycoproteins: Their composition, structure and function (pp. 491–517). Amsterdam: Elsevier.

    Google Scholar 

  • Linhardt, R. J. (2003). 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: Structure and activity. Journal of Medicinal Chemistry, 46, 2551–2564.

    PubMed  CAS  Google Scholar 

  • Lorens, S. A., Guschwan, M., Hata, N., van de Kar, L. D., Walenga, J. M., & Fareed, J. (1991). Behavioral, endocrine, and neurochemical effects of sulfomucopolysaccharide treatment in the aged Fischer 344 male rat. Seminars in Thrombosis and Hemostasis, 17, 164–173.

    PubMed  Google Scholar 

  • Lorenzo, A., & Yankner, B. A. (1994). β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proceedings of the National Academy of Sciences of the United States of America, 91, 12243–12247.

    PubMed  CAS  Google Scholar 

  • Ma, Q., Dudas, B., Hejna, M., Cornelli, U., Lee, J. M., Lorens, S., et al. (2002). The blood-brain barrier accessibility of a heparin-derived oligosaccharides C3. Thrombosis Research, 105, 447–453.

    PubMed  CAS  Google Scholar 

  • Maresh, G. A., Erezyilmaz, D., Murry, C. E., Nochlin, D., & Snow, A. D. (1996). Detection and quantitation of perlecan mRNA levels in Alzheimer's disease and normal aged hippocampus by competitive reverse transcription-polymerase chain reaction. Journal of Neurochemistry, 67, 1132–1144.

    Article  PubMed  CAS  Google Scholar 

  • Mori, H., Takio, K., Ogawara, M., & Selkoe, D. J. (1992). Mass spectrometry of purified amyloid beta protein in Alzheimer's disease. The Journal of Biological Chemistry, 267, 17082–17086.

    PubMed  CAS  Google Scholar 

  • Narindrasorasak, S., Altman, R. A., Gonzalez-DeWhitt, P., Greenberg, B. D., & Kisilevsky, R. (1995). An interaction between basement membrane and Alzheimer amyloid precursor proteins suggests a role in the pathogenesis of Alzheimer's disease. Laboratory Investigation, 72, 272–282.

    PubMed  CAS  Google Scholar 

  • Narindrasorasak, S., Lowery, D. E., Altman, R. A., Gonzalez-DeWhitt, P., Greenberg, B. D., & Kisilevsky, R. (1992). Characterization of high affinity binding between laminin and Alzheimer's disease amyloid precursor proteins. Laboratory Investigation, 67, 643–652.

    PubMed  CAS  Google Scholar 

  • Narindrasorasak, S., Lowery, D., Gonzalez-DeWhitt, P. A., Poorman, R. A., Greenberg, B., & Kisilevsky, R. (1991). High affinity interactions between the Alzheimer's β-amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. The Journal of Biological Chemistry, 266, 12878–12883.

    PubMed  CAS  Google Scholar 

  • Noti, C., & Seeberger, P. H. (2005). Chemical approaches to define the structure-activity relationship of heparin-like glycosaminoglycans. Chemistry and Biology, 12, 731–756.

    PubMed  CAS  Google Scholar 

  • Oddo, S., Billings, L., Kesslak, J. P., Cribbs, D. H., & LaFerla, F. M. (2004). Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 43, 321–332.

    PubMed  CAS  Google Scholar 

  • Oohira, A., Katoh-Semba, R., Watanabe, E., & Matsui, F. (1994). Brain development and multiple molecular species of proteoglycan. Neuroscience Research, 20, 195–207.

    PubMed  CAS  Google Scholar 

  • Parnetti, L., Ban, T. A., & Senin, U. (1995). Glycosaminoglycan polysulfate in primary degenerative dementia. Pilot study of biologic and clinical effects. Neuropsychobiology, 31, 76–80.

    PubMed  CAS  Google Scholar 

  • Paudel, H. K., & Li, W. (1999). Heparin-induced conformational change in microtubule-associated protein Tau as detected by chemical cross-linking and phosphopeptide mapping. The Journal of Biological Chemistry, 274, 8029–8038.

    PubMed  CAS  Google Scholar 

  • Perry, G., Siedlak, S. L., Richey, P., Kawai, M., Cras, P., Kalaria, R. N., et al. (1991). Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer's disease. The Journal of Neuroscience, 11, 3679–3683.

    PubMed  CAS  Google Scholar 

  • Piccini, A., Russo, C., Gliozzi, A., Relini, A., Vitali, A., Borghi, R., et al. (2005). Beta-amyloid is different in normal aging and in Alzheimer disease. The Journal of Biological Chemistry, 280, 34186–34192.

    PubMed  CAS  Google Scholar 

  • Pollack, S. J., Sadler, I. I., Hawtin, S. R., Tailor, V. J., & Shearman, M. S. (1995). Sulfated glycosaminoglycans and dyes attenuate the neurotoxic effects of beta-amyloid in rat PC12 cells. Neuroscience Letters, 184, 113–116.

    PubMed  CAS  Google Scholar 

  • Raman, R., Sasisekharan, V., & Sasisekharan, R. (2005). Structural insights into biological roles of protein-glycosaminoglycan interactions. Chemistry & Biology, 12, 267–277.

    CAS  Google Scholar 

  • Rose, M., Dudas, B., Cornelli, U., & Hanin, I. (2003). Protective effect of the heparin-derived oligosaccharide C3, on AF64A-induced cholinergic lesion in rats. Neurobiology of Aging, 24, 481–490.

    PubMed  CAS  Google Scholar 

  • Rose, M., Dudas, B., Cornelli, U., & Hanin, I. (2004). Glycosaminoglycan C3 protects against AF64A-induced cholinotoxicity in a dose-dependent and time-dependent manner. Brain Research, 1015, 96–102.

    PubMed  CAS  Google Scholar 

  • Sadler, I. I. J., Hawtin, S. R., Tailor, V., Shearman, M. S., & Pollack, S. J. (1995). Glycosaminoglycans and sulphated polyanions attenuate the neurotoxic effects of beta-amyloid. Biochemical Society Transactions, 23, 106S.

    PubMed  CAS  Google Scholar 

  • Sadler, I. I. J., Smith, D. W., Shearman, M. S., Ragan, C. I., Tailor, V. J., & Pollack, S. J. (1995). Sulphated compounds attenuate beta-amyloid toxicity by inhibiting its association with cells. NeuroReport, 7, 49–53.

    PubMed  CAS  Google Scholar 

  • Saido, T. C., Iwatsubo, T., Mann, D. M., Shimada, H., Ihara, Y., & Kawashima, S. (1995). Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron, 14, 457–466.

    PubMed  CAS  Google Scholar 

  • Scholefield, Z., Yates, E. A., Wayne, G., Amour, A., McDowell, W., & Turnbull, J. E. (2003). Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer's beta-secretase. The Journal of Cell Biology, 163, 97–107.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid β-protein. Journal of Alzheimer's Disease, 3, 75–80.

    PubMed  CAS  Google Scholar 

  • Shioi, J., Pangalos, M. N., Ripellino, J. A., Vassilacopoulou, D., Mytilineou, C., Margolis, R. U., et al. (1995). The Alzheimer amyloid precursor proteoglycan (appican) is present in brain and is produced by astrocytes but not by neurons in primary neural cultures. The Journal of Biological Chemistry, 270, 11839–11844.

    PubMed  CAS  Google Scholar 

  • Shioi, J., Refolo, L. M., Efthimiopoulos, S., & Robakis, N. K. (1993). Chondroitin sulfate proteoglycan form of cellular and cell-surface Alzheimer amyloid precursor. Neuroscience Letters, 154, 121–124.

    PubMed  CAS  Google Scholar 

  • Small, S. A. (2005). Alzheimer disease, in living color. Nature Neuroscience, 8, 404–405.

    PubMed  CAS  Google Scholar 

  • Small, D. H., Mok, S. S., Williamson, T. G., & Nurcombe, V. (1996). Role of proteoglycans in neural development, regeneration, and the aging brain. Journal of Neurochemistry, 67, 889–899.

    Article  PubMed  CAS  Google Scholar 

  • Snow, A. D., Kinsella, M. G., Parks, E., Sekiguchi, R. T., Miller, J. D., Kimata, K., et al. (1995). Differential binding of vascular cell-derived proteoglycans (Perlecan, Biglycan, Decorin, and Versican) to the beta-amyloid protein of Alzheimer's disease. Archives of Biochemistry and Biophysics, 320, 84–95.

    PubMed  CAS  Google Scholar 

  • Snow, A. D., Mar, H., Nochlin, D., Kimata, K., Kato, M., Suzuki, S., et al. (1988). The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. The American Journal of Pathology, 133, 456–463.

    PubMed  CAS  Google Scholar 

  • Snow, A. D., Mar, H., Nochlin, D., Sekiguchi, R. T., Kimata, K., Koike, Y., et al. (1990). Early accumulation of heparan sulfate in neurons and in the beta-amyloid protein-containing lesions of Alzheimer's disease and Down's syndrome. The American Journal of Pathology, 137, 1253–1270.

    PubMed  CAS  Google Scholar 

  • Snow, A. D., Nochlin, D., Sekiguchi, R., & Carlson, S. S. (1996). Identification and immunolocalization of a new class of proteoglycan (Keratan Sulfate) to the neuritic plaques of Alzheimer's disease. Experimental Neurology, 138, 305–317.

    PubMed  CAS  Google Scholar 

  • Snow, A. D., Sekiguchi, R., Nochlin, D., Fraser, P., Kimita, K., Mizutani, A., et al. (1994). An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar Aβ-amyloid in rat brain. Neuron, 12, 219–234.

    PubMed  CAS  Google Scholar 

  • Snow, A. D., Sekiguchi, R. T., Nochlin, D., Kalaria, R. N., & Kimata, K. (1994). Heparan sulfate proteoglycan in diffuse plaques of hippocampus but not of cerebellum in Alzheimer's disease. The American Journal of Pathology, 144, 337–347.

    PubMed  CAS  Google Scholar 

  • Snow, A. D., & Wight, T. N. (1989). Proteoglycans in the pathogenesis of Alzheimer's disease and other amyloidoses. Neurobiology of Aging, 10, 481–497.

    PubMed  CAS  Google Scholar 

  • Su, J. H., Cummings, B. J., & Cotman, C. W. (1992). Localization of heparan sulfate glycosaminoglycan and proteoglycan core protein in aged brain and Alzheimer's disease. Neuroscience, 51, 801–813.

    PubMed  CAS  Google Scholar 

  • Tabaton, M., & Piccini, A. (2005). Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer's disease. International Journal of Experimental Pathology, 86, 139–145.

    PubMed  CAS  Google Scholar 

  • Urbanyi, Z., Forrai, E., Sarvari, M., Liko, I., Illes, J., & Pazmany, T. (2005). Glycosaminoglycans inhibit neurodegenerative effects of serum amyloid P component in vitro. Neurochemistry International, 46, 471–477.

    PubMed  CAS  Google Scholar 

  • Verdier, Y., Zarandi, M., & Penke, B. (2004). Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. Journal of Peptide Science, 10, 229–248.

    PubMed  CAS  Google Scholar 

  • Walzer, M., Lorens, S., Hejna, M., Fareed, J., Hanin, I., Cornelli, U., et al. (2002). Low molecular weight glycosaminoglycan blockade of beta-amyloid induced neuropathology. European Journal of Pharmacology, 445, 211–220.

    PubMed  CAS  Google Scholar 

  • Walzer, M., Lorens, S., Hejna, M., Fareed, J., Mervis, R., Hanin, I. et al. (2002). Low molecular weight glycosaminoglycan blockade of beta amyloid (25–35) induced neuropathology. In Y. Mizuno, A. Fisher, & I. Hanin (Eds.), Mapping the progress of Alzheimer's and Parkinson's disease (Advances in Behavioral Biology 51) (pp. 165–170). New York: Kluwer Acedemic/Plenum Publishers.

    Google Scholar 

  • Watanabe, N., Araki, W., Chui, D. H., Makifuchi, T., Ihara, Y., & Tabira, T. (2004). Glypican-1 as an Abeta binding HSPG in the human brain: Its localization in DIG domains and possible roles in the pathogenesis of Alzheimer's disease. FASEB Journal, 18, 1013–1015.

    PubMed  CAS  Google Scholar 

  • Westermark, P., Benson, M. D., Buxbaum, J. N., Cohen, A. S., Frangione, B., Ikeda, S., et al. (2005). Amyloid: Toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid, 12, 1–4.

    Google Scholar 

  • Wisniewski, H. M., & Wegiel, J. (1995). The neuropathology of Alzheimer's disease. Neuroimaging Clinics of North America, 5, 45–57.

    PubMed  CAS  Google Scholar 

  • Wong, C. W., Quaranta, V., & Glenner, G. G. (1985). Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proceedings of the National Academy of Sciences of the United States of America, 82, 8729–8732.

    PubMed  CAS  Google Scholar 

  • Woods, A. G., Cribbs, D. H., Whittemore, E. R., & Cotman, C. W. (1995). Heparan sulfate and chondroitin sulfate glycosaminoglycan attenuate beta-amyloid(25–35) induced neurodegeneration in cultured hippocampal neurons. Brain Research, 697, 53–62.

    PubMed  CAS  Google Scholar 

  • Wright, T. M. (2006). Tramiprosate. Drugs Today (Barc.), 42, 291–298.

    CAS  Google Scholar 

  • Yang, D. S., Serpell, L. C., Yip, C. M., McLaurin, J., Chrishti, M. A., Horne, P., et al. (2001). Assembly of Alzheimer's amyloid-beta fibrils and approaches for therapeutic intervention. Amyloid, 8, 10–19.

    PubMed  CAS  Google Scholar 

  • Yang, S. P., Kwon, B. O., Gho, Y. S., & Chae, C. B. (2005). Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. Journal of Neurochemistry, 93, 118–127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morissette, C. et al. (2007). Potential Applications of Glycosaminoglycan-Related Compounds in Alzheimer's Disease. In: Pharmacological Mechanisms in Alzheimer's Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71522-3_16

Download citation

Publish with us

Policies and ethics