Skip to main content
  • 1011 Accesses

Abstract

For followers of Copenhagen, study of the foundational aspects of quantum theory was effectively completed in 1927 by Bohr’s paper at Como. Bohr was to continue to write on quantum theory and complementarity for the remainder of his life, but his writings were mainly explanatory, or attempts to strengthen the philosophical base of complementarity, or applications of complementarity to areas of knowledge other than quantum theory.1 It was taken for granted that no genuine re-examination of the fundamental issues was required-or, indeed, permitted. John Clauser2 has made it particularly clear to what extent any questioning of the Copenhagen position was regarded practically as heresy: ‘Religious dogmatism then quickly promoted a nearly universal acceptance of quantum theory and its Copenhagen interpretation as gospel, along with a total unwillingness to even mildly question the theory’s foundations.’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folse H.J. (1985). The Philosophy of Niels Bohr. Amsterdam: North-Holland; Whitaker, A. (2006). Einstein, Bohr and the Quantum Dilemma. (1st edn. 1996, 2nd edn. 2006) Cambridge: Cambridge University Press.

    Google Scholar 

  2. Clauser J.F. (2002). Early history of Bell’s theorem, In: Quantum [Un]speakables. (Bertlmann R.A. and Zeilinger A., (eds.)) Berlin: Springer, pp. 61–98.

    Google Scholar 

  3. Ghose P. (2006). Testing Quantum Mechanics on New Ground. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Leggett AJ. (1984). Macroscopic quantum tunnelling and related effects in Josephson systems, In: Percolation, Localization, and Superconductivity. (Goldman A.M and Wolf S., (eds.)) NATO Advanced Study Institute, Vol. 109. New York: Plenum, pp. 1–41.

    Google Scholar 

  5. Leggett AJ. (1986). Quantum mechanics at the macroscopic level, In: Directions in Condensed Matter Physics. (Grinstein G. and Mazenko G.,(eds.)) Singapore: World Scientific, pp. 237–44.

    Google Scholar 

  6. Leggett A.J., Chakravarty S., Dorsey A.T., Fisher M.P.A., Garg A. and Zwerger W. (1987). Dynamics of the dissipative two-state system, Reviews of Modern Physics 59, 1–85.

    Article  ADS  Google Scholar 

  7. Tesche CD., Kirtley J.R., Gallagher W.J., Kleinsasser A.W, Sandstorm R.L., Raider S.I., and Fisher M.P.A. (1989). In: Proceedings of the 3rd International Symposium on the Foundations of Quantum Mechanics (Kobayashi S. et al., (eds.)), Tokyo: Physical Society of Japan, pp. 233–43.

    Google Scholar 

  8. Tesche CD. (1990). Can a non-invasive measurement of magnetic flux be performed with superconducting circuits? Physical Review Letters 64, 2358–61.

    Article  ADS  Google Scholar 

  9. Feynman R.P., Leighton R.B., and Sands M. (1964). Feynman Lectures on Physics, Vol. 3, Chs. 9–1. Reading, Massachusetts: Addision Wesley.

    Google Scholar 

  10. Rae A.I.M. (1990). Can GRW theory be tested by experiments on SQUIDs? Journal ofPhysicsA 23,L57–60.

    Google Scholar 

  11. Gallis M.R. and Fleming G.N. (1990). Environmental and spontaneous localization, Physical Review A 42, 38–48.

    Article  ADS  Google Scholar 

  12. Leggett A. J. (1986). Quantum mechanics at the macroscopic level. In: Lesson of Quantum Theory (de Boer J., Dal E. and Ulfbeck O., (eds.)) Amsterdam: Elsevier, p. 49–64.

    Google Scholar 

  13. Leggett AJ. (1980). Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics (Supplement) 69, 80–100.

    Article  MathSciNet  Google Scholar 

  14. Leggett AJ. and Garg A. (1985). Quantum mechanics versus macroscopic realism is the flux there when nobody looks? Physical Review Letters 54, 857–60.

    Article  ADS  MathSciNet  Google Scholar 

  15. Leggett AJ. (1987). Experimental approaches to the quantum mechanics paradox, In: Proceedings of the 2nd International Symposium on the Foundations of Quantum Mechanics. (Namiki M. et al., (eds.)), Tokyo: Physical Society of Japan, pp. 297–317.

    Google Scholar 

  16. Bol D.W and Ouboter R.D. (1988). Thermal activation in the quantum regime and macroscopic tunnelling in the thermal regime in a metabistable system..., Physica 154B, 56–65.

    ADS  Google Scholar 

  17. Clifton R.K. (1991). In: Proceedings of the Symposium on the Foundations of Modern Physics 1990 (Lahti P. and Mittelsteadt P., eds.), Singapore: World Scientific.

    Google Scholar 

  18. Redhead M. (1987). Incompleteness, Nonlocality, and Realism. Oxford, UK: Oxford University Press, Ch. 4.

    MATH  Google Scholar 

  19. Chakravarty S. and Leggett A. J. (1984). Dynamics of the two-state system with ohmic dissipation, Physical Review Letters 52, 5–8.

    Article  ADS  Google Scholar 

  20. Leggett AJ. (2002). Testing the limits of quantum mechanics: motivation, state of play, prospects, Journal of Physics-Condensed. Matter 14, R 415–51.

    Article  ADS  Google Scholar 

  21. Yu Y, Han S.Y, Chu X., Chu S.I., and Wang Z. (2002). Coherent temporal oscillations of macroscopic states in a Josephson junction, Science, 296, 889–92.

    Article  ADS  Google Scholar 

  22. Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C, Esteve D., and Devoret M.H. (2002). Manipulating the quantum state of an electrical circuit, Science 296, 886–9.

    Article  ADS  Google Scholar 

  23. Friedman J.R., Patel V., Chen W., Tolpygo S.K., and Lukens J.E. (2000). Quantum superposition of distinct macroscopic states, Nature 406, 43–6.

    Article  ADS  Google Scholar 

  24. Arndt M., Nairz O., Vos-Andreae J., Keller C, van der Zouw G., and Zeilinger A. (1999). Wave-particle duality of C 60 molecules, Nature 401, 680–2.

    Article  ADS  Google Scholar 

  25. Arndt M., Hornberger K., and Zeilinger A. (2005). Probing the limits of the quantum world, Physics World 18(3), 35–40.

    Google Scholar 

  26. Hackermuller L., Uttenthaler S., Hornberger K., Reiger E., Brezger B., Zeilinger A., and Arndt M. (2003). Wave nature of biomolecules and fluorofullerenes, Physical Review Letters 91, 090408.

    Article  ADS  Google Scholar 

  27. Awschalom D.D., Smyth J.F., Grinstein G., DiVincenzo D.P., and Loss, D. (1992). Macroscopic quantum tunnelling in magnetic proteins, Physics Review Letters 68, 3092–5.

    Article  ADS  Google Scholar 

  28. Home D. and Chattopadhyaya R. (1996). DNA molecular cousin of Schrödinger’s cat:a curious example of quantum measurement, Physical Review Letters 76, 2836–9.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Rae A. (1986). Quantum Physics: Illusion or Reality? Cambridge: Cambridge University Press, 1986, p.61.

    Google Scholar 

  30. Shimony A. (1989). Search for a worldview which can accommodate our knowledge of microphysics, In: Philosophical Consequences of Quantum Theory. (Cushing J.T. and McMullin E., (eds.)), Notre Dame: University of Notre Dame Press, pp. 25–37.

    Google Scholar 

  31. Percival I. (1991). Schrödinger quantum cat, Nature 351, 357.

    Google Scholar 

  32. Marshall W., Simon C, Penrose, R., and Bouwmeester, D. (2003). Towards quantum superposition of a mirror, Physical Review Letters 91, 130401.

    Google Scholar 

  33. Fonda L., Ghirardi G.C., Rimini A., and Weber T. (1973). Quantum foundations of exponential decay law, Nuovo Cimento A 15, 689–704.

    Article  ADS  Google Scholar 

  34. Degasperis A., Fonda, L., and Ghirardi, G.C. (1974). Does lifetime of an unstable system depend on measuring apparatus, Nuovo Cimento A 21, 471–84.

    Article  ADS  Google Scholar 

  35. Misra B. and Sudarshan E.C.G. (1977). Zeno’s paradox in quantum theory, Journal of Mathematical Physics 18, 756–63.

    Article  ADS  MathSciNet  Google Scholar 

  36. Chiu C.B., Sudarshan E.C.G., and Misra B. (1977). Time evolution of unstable quantum states and a resolution of Zeno’s paradox, Physical Review D 16, 520–9.

    Article  ADS  MathSciNet  Google Scholar 

  37. Home D. and Whitaker M. A.B. (1992). A critical re-examination of the quantum Zeno paradox, Journal of Physics A 25, 657–64.

    Article  Google Scholar 

  38. Itano W.M., Heinzen D.J., Bollinger J.J., and Wineland D.J. (1990). Quantum Zeno effect, Physical Review A 41, 2295–300.

    Article  ADS  Google Scholar 

  39. Wineland D.J. and Itano WM. (1987). Laser cooling, Physics Today 40(6), 34–40.

    Article  Google Scholar 

  40. Home D. and Whitaker M.A.B. (1997). A conceptual analysis of quantum Zeno: paradox, timeasurement and experiment, Annals of Physics 258, 237–85.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Facchi P. and Pascazio S. (2001). Quantum Zeno and inverse quantum Zeno effects, Progress in Optics 42, 147–217.

    Article  Google Scholar 

  42. Facchi P., Nakazoto H., and Pascazio S. (2001). From the quantum Zeno to the inverse quantum Zeno effect, Physical Review Letters 86, 2699–703.

    Article  ADS  Google Scholar 

  43. Balachandran A.P. and Roy S.M. (2000). Quantum anti-Zeno paradox, Physical Review Letters 84, 4019–22.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Facchi P. Lidar D.A., and Pascazio S. (2004). Unification of dynamical decoupling and the quantum Zeno effect, Physical Review A 69, 032314.

    Article  ADS  Google Scholar 

  45. Luis A. (2001). Quantum state preparation and control via the quantum Zeno effect, Physical Review A 63, 0521

    Article  Google Scholar 

  46. Facchi P., Tasaki S., Pascazio S., Nakazato H., Tokuse A., and Lidar D.A. (2005). Control of decoherence: analysis and comparison of three different strategies, Physical Review A 71, 022302.

    Article  ADS  Google Scholar 

  47. Mandelstam L. and Tamm I.G. (1945). The uncertainty principle between energy and time in nonrelativistic quantum mechanics, Journal of Physics (USSR) 9, 249–54.

    MathSciNet  Google Scholar 

  48. Allcock G.R. (1969). The time of arrival in quantum mechanics, Annals of Physics (New York) 53, 253–85, 286-310, 311-48.

    Article  ADS  Google Scholar 

  49. Gislason E.A., Sabeli N.H., and Wood J.W. (1985). New form of the time-energy uncertainty relation, Physical Review A 31, 2078–81.

    Article  ADS  MathSciNet  Google Scholar 

  50. Landau L. and Peierls R. (1931). Extension of the principle of indeterminateness for the relativistic quantum theory, Zeitschrift fur Physik 69, 56–69.

    Article  MATH  ADS  Google Scholar 

  51. Aharonov Y. and Bohm D. (1961). Time in the quantum theory and the uncertainty relation for time and energy, Physical Review A 122, 1649–58.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Aharonov Y. and Bohm D. (1964). Answer to Fock concerning the time energy indeterminacy relation, Physical Review B 134, 1417–8.

    Article  ADS  MathSciNet  Google Scholar 

  53. Pegg D.T. (1991). Wave-function collapse time, Physics Letters A 153, 263–4.

    Article  ADS  Google Scholar 

  54. Busch P. (2002). The time-energy uncertainty relations, in Ref. [55], pp. 69–98.

    Google Scholar 

  55. Muga J.G. Sala Mayato R., and Egusquiza I.L. ((eds.)) (2002). Time in Quantum Mechanics. Berlin: Springer.

    Google Scholar 

  56. Pauli W (1958). In: Encyclopedia of Physics (Flugge S., ed.) Berlin: Springer, Vol. V/l,p. 60.

    Google Scholar 

  57. Grot N., Rovelli C, and Tate R.S. (1996). Time of arrival in quantum mechanics, Physical Review A, 54, 4676–90.

    Article  ADS  MathSciNet  Google Scholar 

  58. Muga J.G. and Leavens C.R. (2000). Arrival time in quantum mechanics, Physics Reports 338, 353–438.

    Article  ADS  MathSciNet  Google Scholar 

  59. Hauge E.H. and Stovneng J.A. (1989). Tunnelling times-a critical review, Reviews of Modern Physics 61, 917–36.

    Article  ADS  Google Scholar 

  60. Landauer R. and Martin T. (1994). Barrier interaction times in tunnelling, Reviews of Modern Physics 66, 217–28.

    Article  ADS  Google Scholar 

  61. Collins S., Lowe D., and Barker J.R. (1987). The quantum-mechanical tunnelling time problem revisited, Journal of Physics C 20, 6213–32.

    Article  Google Scholar 

  62. Dumont R.S. and Marchioro T.L. (1993). Tunneling-time probability-distribution, Physical Review A 47, 85–97.

    Article  ADS  Google Scholar 

  63. Garcia-Calderon G. and Villavicencio J. (2001). Time dependence of the probability density in the transient regime for tunnelling, Physical Review A 64, 012107.

    Article  ADS  Google Scholar 

  64. Garcia-Calderon G. (2002). Decay time and tunnelling transient phenomena, Physical Review A 66, 032104.

    Article  ADS  Google Scholar 

  65. Sokolovski D. and Baskin L.M. (1987). Transverse time in quantum scattering, Physical Review A 36, 4604–11.

    Article  ADS  Google Scholar 

  66. Capasso F., Mohammed K., and Cho A.Y (1986). Resonant tunnelling through double barriers, tiperpendicular quantum transport phenomena 4 superlattices, and their device applications, IEEE Journbal of Quantum Electronics 22, 1853–69.

    Article  ADS  Google Scholar 

  67. Brouard S., Sala R., and Muga J.G. (1994). Systematic approach to quantum transmission and reflection times, Physical Review A 49,4312–25.

    Article  ADS  Google Scholar 

  68. Steinberg A.M., Kwiat P.G., and Chiao R.Y (1993). Measurement of the single photon tunnelling-time, Physical Review Letters 71, 708–11.

    Article  ADS  Google Scholar 

  69. Chiao R.Y. (1993). Superluminal (but causal) propagation of wave-packets in transparent media with inverted atomic populations, Physical Review A 48, R34–7.

    Article  ADS  Google Scholar 

  70. Chiao R.Y, Kozhekin A.E., and Kuriski G. (1996). Tachyonlike excitations in inverted two-level media, Physical Review Letters 77, 1254–7.

    Article  ADS  Google Scholar 

  71. Chiao R.Y. and Steinberg A.M. (1997). Tunneling times and superluminality, Progress in Optics 37, 345–405.

    Article  Google Scholar 

  72. Chiao R.Y., Kwiat P.G., and Steinberg A.M. (1993). Faster than light, Scientific American 269(2), 52–60.

    Article  ADS  Google Scholar 

  73. Ranfagni A., Fabeni P., Pazzi G.P., and Mugnai D. (1993). Anomalous pulse delay in microwave propagation-a plausible connection to the tunnelling time, Physical Review E 48, 1453–60.

    Article  ADS  Google Scholar 

  74. Steinberg A.M. (2003). Clear message for causality, Physics World 16 (12), 19–20.

    Article  Google Scholar 

  75. Davies P.C.W. (2005). Quantum tunnelling time, American Journal of Physics 73, 23–7.

    Article  ADS  Google Scholar 

  76. Salecker H. and Wigner E.P. (1958). Quantum limitations of the measurement of space-time distances, Physical Review 109, 571–7

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. Peres A. (1980). Measurement of time by quantum clocks, American. Journal of Physics 48, 552–7.

    MathSciNet  Google Scholar 

  78. Olkhovsky V.S., Recami E., and Salesi G. (2002). Superluminal tunnelling through two successive barriers, Europhysics Letters 57, 879–84.

    Article  ADS  Google Scholar 

  79. Davies P.C.W. (2004). Quantum mechanics and the equivalence principle, Classical and Quantum Gravity 21, 2761–72.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  80. Davies P.C.W. (2004). Transit time of a freely falling quantum particle in a background gravitational field, Classical and Quantum Gravity 21, 5677–83.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  81. Chiao R.Y. and Speliotopoulos A.D. (2003). Quantum interference to measure spacetime curvature: a proposed experiment at the intersection of quantum mechanics and general relativity, International Journal of Modern Physics D 12, 1627–32.

    Article  ADS  Google Scholar 

  82. Yamada N. and Takagi S. (1991). Quantum mechanical probabilities on a general spacetime surface: 2. Nontrivial example of non-interfering alternatives in quantum mechanics, Progress of Theoretical Physics 85, 599–615.

    Article  ADS  Google Scholar 

  83. Muga J.G., Brouard S., and Macias D. (1995). Time of arrival in quantum mechanics, Annals of Physics (New York) 240, 351–66.

    Article  ADS  MathSciNet  Google Scholar 

  84. Delgado V. (1999). Quantum probability distribution of arrival times and probability current density, Physical Review A 59, 1010–20.

    Article  ADS  MathSciNet  Google Scholar 

  85. Ali M.M., Majumdar A.S., Home D., and Sengupta S. (2003). Spin-dependent observable effect for free particles using an arrival time distribution, Physical Review A 68, 042105 and reference therein.

    Google Scholar 

  86. Leavens C.R. (1993). Arrival time distributions, Physics Letters A 178, 27–32.

    Article  ADS  Google Scholar 

  87. McKinnon W.R. and Leavens C.R. (1995). Distributions of delay times and transmission times in Bohm’s causal interpretation of quantum mechanics, Physical Review A 51, 2748–57.

    Article  ADS  Google Scholar 

  88. Leavens C.R. (1998). Time of arrival in quantum and Bohmian mechanics, Physical Review A 58, 840–7.

    Article  ADS  MathSciNet  Google Scholar 

  89. Damborenea J.A., Egusquiza I.L., Hegerfeldt G.C., and Muga J.G. (2002). Measurement-based approach to quantum arrival times, Physical Review A 66, 052104.

    Article  ADS  Google Scholar 

  90. Hagerfeldt G.C., Seidel D., and Muga J.G. (2003). Quantum arrival times and operator normalization, Physical Review A 68, 022111.

    Article  ADS  Google Scholar 

  91. Kijowski J. (1974). On the time operator in quantum mechanics ands the Heisenberg uncertainty relations for energy and time, Reports on Mathematical Physics 6, 361–86.

    Article  MathSciNet  ADS  Google Scholar 

  92. Pan A.K., Ali M.M., and Home D. (2006). Observability of the arrival time distribution using spin-rotator as a quantum clock, Physics Letters A 352, 296–303.

    Article  ADS  MATH  Google Scholar 

  93. Hasegawa Y, Loidl R., Badurek G., Baron M., and Rauch H. (2003). Violation of Bell-like inequality in single-neutron interferometry, Nature 425, 45–8.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Quantum Foundations: General Outlook. In: Einstein’s Struggles with Quantum Theory. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71520-9_13

Download citation

Publish with us

Policies and ethics