Skip to main content
Book cover

Angiogenesis pp 533–539Cite as

Angiogenesis and Pathology in the Oral Cavity

  • Chapter
  • 2809 Accesses

This chapter discusses the role of angiogenesis in non-neoplastic pathologies that affect the dentition and its supporting structures. Teeth and the tissues that support the teeth frequently respond to insults such as injury, infection, and orthodontic stress with the development of a robust proangiogenic environment. Yet aside from malignancies, the role of angiogenesis in pathologies of the oral cavity has not received widespread attention. Several recent studies suggest a role for angiogenesis in the development of diseases of the periodontium and the dental pulp. The evidence also supports the emerging concept that the severity of diseases such as chronic periodontitis depends upon individualized host responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Squier CA, Nanny D. Measurement of blood flow in the oral mucosa and skin of the rhesus monkey using radiolabelled microspheres. Arch Oral Biol 1985;30(4):313–8.

    Article  PubMed  CAS  Google Scholar 

  2. Meyer MW. Distributionoof cardiac output to oral tissues in dogs. J Dent Res 1970;49(4):787–94.

    PubMed  CAS  Google Scholar 

  3. Kaplan ML, Davis MA, Goldhaber P. Blood flow measurements in selected oral tissues in dogs using radiolabelled microspheres and rubidium-86. Arch Oral Biol 1978;23(4):281–4.

    Article  PubMed  CAS  Google Scholar 

  4. Kaplan ML, Jeffcoat MK, Goldhaber P. Blood flow in gingiva and alveolar bone in beagles with periodontal disease. J Periodontal Res 1982;17(4):384–9.

    Article  PubMed  CAS  Google Scholar 

  5. Zelles T, Purushotham KR, Macauley SP, Oxford GE, Humphreys-Beher MG. Saliva and growth factors: the fountain of youth resides in us all. J Dent Res 1995;74(12):1826–32.

    Article  PubMed  CAS  Google Scholar 

  6. Tabak LA. In defense of the oral cavity: the protective role of the salivary secretions. Pediatr Dent 2006;28(2):110–7; discussion 92–8.

    PubMed  Google Scholar 

  7. Taichman NS, Cruchley AT, Fletcher LM, et al. Vascular endothelial growth factor in normal human salivary glands and saliva: a possible role in the maintenance of mucosal homeostasis. Lab Invest 1998;78(7):869–75.

    PubMed  CAS  Google Scholar 

  8. Pammer J, Weninger W, Mildner M, Burian M, Wojta J, Tschachler E. Vascular endothelial growth factor is constitutively expressed in normal human salivary glands and is secreted in the saliva of healthy individuals. J Pathol 1998;186(2):186–91.

    Article  PubMed  CAS  Google Scholar 

  9. Lingen M, Sturgis EM, Kies MS. Squamous cell carcinoma of the head and neck in nonsmokers: clinical and biologic characteristics and implications for management. Curr Opin Oncol 2001;13(3):176–82.

    Article  PubMed  CAS  Google Scholar 

  10. Albandar JM, Brunelle JA, Kingman A. Destructive periodontal disease in adults 30 years of age and older in the United States, 1988–1994. J Periodontol 1999;70(1):13–29.

    Article  PubMed  CAS  Google Scholar 

  11. Geerts SO, Nys M, De MP, et al. Systemic release of endotoxins induced by gentle mastication: association with periodontitis severity. J Periodontol 2002;73(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  12. Desvarieux M, Demmer RT, Rundek T, et al. Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation 2005;111(5):576–82.

    Article  PubMed  Google Scholar 

  13. Lee HJ, Garcia RI, Janket SJ, et al. The association between cumulative periodontal disease and stroke history in older adults. J Periodontol 2006;77(10):1744–54.

    Article  PubMed  CAS  Google Scholar 

  14. Beck JD, Eke P, Heiss G, et al. Periodontal disease and coronary heart disease: a reappraisal of the exposure. Circulation 2005;112(1):19–24.

    Article  PubMed  Google Scholar 

  15. Beck JD, Offenbacher S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 2005;76(11 Suppl):2089–100.

    Article  PubMed  Google Scholar 

  16. Offenbacher S, Beck JD. A perspective on the potential cardioprotective benefits of periodontal therapy. Am Heart J 2005;149(6):950–4.

    Article  PubMed  Google Scholar 

  17. Kantarci A, Van Dyke TE. Resolution of inflammation in periodontitis. J Periodontol 2005;76(11 Suppl):2168–74.

    Article  PubMed  Google Scholar 

  18. Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology 2006;94(1):10–21.

    Article  PubMed  Google Scholar 

  19. Kindlova M. Vascular supply of the periodontium in periodontitis. Int Dent J 1967;17(2):476–89.

    PubMed  CAS  Google Scholar 

  20. Hock JM, Kim S. Blood flow in healed and inflamed periodontal tissues of dogs. J Periodontal Res 1987;22(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  21. Bonakdar MP, Barber PM, Newman HN. The vasculature in chronic adult periodontitis: a qualitative and quantitative study. J Periodontol 1997;68(1):50–8.

    PubMed  CAS  Google Scholar 

  22. Zoellner H, Hunter N. Vascular expansion in chronic periodontitis. J Oral Pathol Med 1991;20(9):433–7.

    Article  PubMed  CAS  Google Scholar 

  23. Yun PL, Decarlo AA, Chapple CC, Hunter N. Functional implication of the hydrolysis of platelet endothelial cell adhesion molecule 1 (CD31) by gingipains of Porphyromonas gingivalis for the pathology of periodontal disease. Infect Immun 2005;73(3):1386–98.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson RB, Serio FG, Dai X. Vascular endothelial growth factors and progression of periodontal diseases. J Periodontol 1999;70(8):848–52.

    Article  PubMed  CAS  Google Scholar 

  25. Ohshima M, Fujikawa K, Akutagawa H, Kato T, Ito K, Otsuka K. Hepatocyte growth factor in saliva: a possible marker for periodontal disease status. J Oral Sci 2002;44(1):35–9.

    PubMed  CAS  Google Scholar 

  26. Kakimoto K, Machigashira M, Ohnishi T, et al. Hepatocyte growth factor in gingival crevicular fluid and the distribution of hepatocyte growth factor-activator in gingival tissue from adult periodontitis. Arch Oral Biol 2002;47(9):655–63.

    Article  PubMed  CAS  Google Scholar 

  27. Sakai A, Ohshima M, Sugano N, Otsuka K, Ito K. Profiling the cytokines in gingival crevicular fluid using a cytokine antibody array. J Periodontol 2006;77(5):856–64.

    Article  PubMed  CAS  Google Scholar 

  28. Booth V, Young S, Cruchley A, Taichman NS, Paleolog E. Vascular endothelial growth factor in human periodontal disease. J Periodontal Res 1998;33(8):491–9.

    Article  PubMed  CAS  Google Scholar 

  29. Chapple CC, Kumar RK, Hunter N. Vascular remodelling in chronic inflammatory periodontal disease. J Oral Pathol Med 2000;29(10):500–6.

    Article  PubMed  CAS  Google Scholar 

  30. Unlu F, Guneri PG, Hekimgil M, Yesilbek B, Boyacioglu H. Expression of vascular endothelial growth factor in human periodontal tissues: comparison of healthy and diabetic patients. J Periodontol 2003;74(2):181–7.

    Article  PubMed  CAS  Google Scholar 

  31. Schenkein HA, Genco RJ. Gingival fluid and serum in periodontal diseases. I. Quantitative study of immunoglobulins, complement components, and other plasma proteins. J Periodontol 1977;48(12):772–7.

    PubMed  CAS  Google Scholar 

  32. Machtei EE, Dunford R, Hausmann E, et al. Longitudinal study of prognostic factors in established periodontitis patients. J Clin Periodontol 1997;24(2):102–9.

    Article  PubMed  CAS  Google Scholar 

  33. Gamonal J, Acevedo A, Bascones A, Jorge O, Silva A. Levels of interleukin-1 beta, −8, and −10 and RANTES in gingival crevicular fluid and cell populations in adult periodontitis patients and the effect of periodontal treatment. J Periodontol 2000;71(10):1535–45.

    Article  PubMed  CAS  Google Scholar 

  34. Alpagot T, Bell C, Lundergan W, Chambers DW, Rudin R. Longitudinal evaluation of GCF MMP-3 and TIMP-1 levels as prognostic factors for progression of periodontitis. J Clin Periodontol 2001;28(4):353–9.

    Article  PubMed  CAS  Google Scholar 

  35. Ozmeric N. Advances in periodontal disease markers. Clin Chim Acta 2004;343(1–2):1–16.

    Article  PubMed  CAS  Google Scholar 

  36. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992;3(2):211–20.

    PubMed  CAS  Google Scholar 

  37. Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E. Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol 1997;62(3):397–400.

    PubMed  CAS  Google Scholar 

  38. Suthin K, Matsushita K, Machigashira M, et al. Enhanced expression of vascular endothelial growth factor by periodontal pathogens in gingival fibroblasts. J Periodontal Res 2003;38(1):90–6.

    Article  PubMed  CAS  Google Scholar 

  39. Uehara A, Muramoto K, Imamura T, et al. Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. J Immunol 2005;175(9):6076–84.

    PubMed  CAS  Google Scholar 

  40. Yoshino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts. J Periodontal Res 2003;38(4):405–10.

    PubMed  CAS  Google Scholar 

  41. Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 2006;54(2):258–65.

    Article  PubMed  Google Scholar 

  42. Seymour RA, Ellis JS, Thomason JM. Risk factors for drug-induced gingival overgrowth. J Clin Periodontol 2000;27(4):217–23.

    Article  PubMed  CAS  Google Scholar 

  43. Trackman PC, Kantarci A. Connective tissue metabolism and gingival overgrowth. Crit Rev Oral Biol Med 2004;15(3): 165–75.

    Article  PubMed  CAS  Google Scholar 

  44. Uzel MI, Kantarci A, Hong HH, et al. Connective tissue growth factor in drug-induced gingival overgrowth. J Periodontol 2001;72(7):921–31.

    Article  PubMed  CAS  Google Scholar 

  45. Iacopino AM, Doxey D, Cutler CW, et al. Phenytoin and cyclosporine A specifically regulate macrophage phenotype and expression of platelet-derived growth factor and interleukin-1 in vitro and in vivo: possible molecular mechanism of drug-induced gingival hyperplasia. J Periodontol 1997;68(1):73–83.

    PubMed  CAS  Google Scholar 

  46. Saito K, Mori S, Iwakura M, Sakamoto S. Immunohistochemical localization of transforming growth factor beta, basic fibroblast growth factor and heparan sulphate glycosaminoglycan in gingival hyperplasia induced by nifedipine and phenytoin. J Periodontal Res 1996;31(8):545–55.

    Article  PubMed  CAS  Google Scholar 

  47. Wondimu B, Reinholt FP, Modeer T. Stereologic study of cyclosporin A-induced gingival overgrowth in renal transplant patients. Eur J Oral Sci 1995;103(4):199–206.

    Article  PubMed  CAS  Google Scholar 

  48. Ayanoglou CM, Lesty C. Cyclosporin A-induced gingival overgrowth in the rat: a histological, ultrastructural and histomorphometric evaluation. J Periodontal Res 1999;34(1):7–15.

    Article  PubMed  CAS  Google Scholar 

  49. Koh JT, Kim OJ, Park YS, et al. Decreased expressions of thrombospondin 2 in cyclosporin A-induced gingival overgrowth. J Periodontal Res 2004;39(2):93–100.

    Article  PubMed  CAS  Google Scholar 

  50. Cetinkaya BO, Acikgoz G, Ayas B, Aliyev E, Sakallioglu EE. Increased expression of vascular endothelial growth factor in cyclosporin A-induced gingival overgrowth in rats. J Periodontol 2006;77(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  51. Esmeili T, Lozada-Nur F, Epstein J. Common benign oral soft tissue masses. Dent Clin North Am 2005;49(1):223–40, x.

    Article  PubMed  Google Scholar 

  52. Yuan K, Jin YT, Lin MT. The detection and comparison of angiogenesis-associated factors in pyogenic granuloma by immunohistochemistry. J Periodontol 2000;71(5):701–9.

    Article  PubMed  CAS  Google Scholar 

  53. Murata M, Hara K, Saku T. Dynamic distribution of basic fibroblast growth factor during epulis formation: an immunohistochemical study in an enhanced healing process of the gingiva. J Oral Pathol Med 1997;26(5):224–32.

    Article  PubMed  CAS  Google Scholar 

  54. Yuan K, Lin MT. The roles of vascular endothelial growth factor and angiopoietin-2 in the regression of pregnancy pyogenic granuloma. Oral Dis 2004;10(3):179–85.

    Article  PubMed  CAS  Google Scholar 

  55. Li VW, Li WW, Talcott KE, Zhai AW. Imiquimod as an antiangiogenic agent. J Drugs Dermatol 2005;4(6):708–17.

    PubMed  Google Scholar 

  56. Ezzell TI, Fromowitz JS, Ramos-Caro FA. Recurrent pyogenic granuloma treated with topical imiquimod. J Am Acad Dermatol 2006;54(5 Suppl):S244–5.

    Article  PubMed  Google Scholar 

  57. Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ 2003;67(6): 678–89.

    PubMed  Google Scholar 

  58. Toyono T, Nakashima M, Kuhara S, Akamine A. Expression of TGF-beta superfamily receptors in dental pulp. J Dent Res 1997;76(9):1555–60.

    Article  PubMed  CAS  Google Scholar 

  59. Artese L, Rubini C, Ferrero G, Fioroni M, Santinelli A, Piattelli A. Vascular endothelial growth factor (VEGF) expression in healthy and inflamed human dental pulps. J Endod 2002;28(1): 20–3.

    Article  PubMed  Google Scholar 

  60. Matthews B, Andrew D. Microvascular architecture and exchange in teeth. Microcirculation 1995;2(4):305–13.

    Article  PubMed  CAS  Google Scholar 

  61. Heyeraas KJ, Berggreen E. Interstitial fluid pressure in normal and inflamed pulp. Crit Rev Oral Biol Med 1999;10(3): 328–36.

    Article  PubMed  CAS  Google Scholar 

  62. Roberts-Clark DJ, Smith AJ. Angiogenic growth factors in human dentine matrix. Arch Oral Biol 2000;45(11): 1013–6.

    Article  PubMed  CAS  Google Scholar 

  63. Tran-Hung L, Mathieu S, About I. Role of Human Pulp Fibroblasts in Angiogenesis. J Dent Res 2006;85(9):819–23.

    Article  PubMed  CAS  Google Scholar 

  64. Telles PD, Hanks CT, Machado MA, Nor JE. Lipoteichoic acid up-regulates VEGF expression in macrophages and pulp cells. J Dent Res 2003;82(6):466–70.

    Article  PubMed  CAS  Google Scholar 

  65. Derringer KA, Jaggers DC, Linden RW. Angiogenesis in human dental pulp following orthodontic tooth movement. J Dent Res 1996;75(10):1761–6.

    Article  PubMed  CAS  Google Scholar 

  66. Derringer KA, Linden RW. Vascular endothelial growth factor, fibroblast growth factor 2, platelet derived growth factor and transforming growth factor beta released in human dental pulp following orthodontic force. Arch Oral Biol 2004;49(8): 631–41.

    Article  PubMed  CAS  Google Scholar 

  67. Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery 1981;90(2):262–70.

    PubMed  CAS  Google Scholar 

  68. Swift ME, Kleinman HK, DiPietro LA. Impaired wound repair and delayed angiogenesis in aged mice. Lab Invest 1999;79(12):1479–87.

    PubMed  CAS  Google Scholar 

  69. Szpaderska AM, Walsh CG, Steinberg MJ, DiPietro LA. Distinct patterns of angiogenesis in oral and skin wounds. J Dent Res 2005;84(4):309–14.

    Article  PubMed  CAS  Google Scholar 

  70. Bloch W, Huggel K, Sasaki T, et al. The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. Faseb J 2000;14(15):2373–6.

    PubMed  CAS  Google Scholar 

  71. Nanney LB, Wamil BD, Whitsitt J, et al. CM101 stimulates cutaneous wound healing through an anti-angiogenic mechanism. Angiogenesis 2001;4(1):61–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

DiPietro, L.A. (2008). Angiogenesis and Pathology in the Oral Cavity. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics