Skip to main content

VEGF Signal Tranduction in Angiogenesis

  • Chapter
Angiogenesis

The development of a number of novel tumor therapies targeting the function of vascular endothelial growth factors (VEGFs) and their receptors has promoted an interest in understanding signal transduction regulating angiogenesis, i.e. formation of new blood vessels. The VEGFRs regulate many if not all aspects of endothelial cell function during active angiogenesis, and mediate survival signals during endothelial cell quiescence. Most tumors produce VEGF as a consequence of the hypoxic tumor microenvironment, leading to persistent stimulation of angiogenesis necessary for an expansion of the tumor as well as tumor spread through the circulation. Increased understanding of VEGFR signal transduction properties may allow development of fine-tuned therapy, targeting pathways critical in formation of new tumor vessels while preserving pathways required for survival of endothelial cells in normal vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9(6):669–76.

    Article  PubMed  CAS  Google Scholar 

  2. Woolard J, Wang WY, Bevan HS, et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 2004;64(21):7822–35.

    Article  PubMed  CAS  Google Scholar 

  3. Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 1998;273(47):31273–82.

    Article  PubMed  CAS  Google Scholar 

  4. Wise LM, Veikkola T, Mercer AA, et al. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 1999;96(6):3071–6.

    Article  PubMed  CAS  Google Scholar 

  5. Yamazaki Y, Tokunaga Y, Takani K, Morita T. C-terminal heparin- binding peptide of snake venom VEGF specifically blocks VEGF-stimulated endothelial cell proliferation. Pathophysiol Haemost Thromb 2005;34(4–5):197–9.

    Article  PubMed  CAS  Google Scholar 

  6. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006;7(5):359–71.

    Article  PubMed  CAS  Google Scholar 

  7. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 1993;90(22):10705–9.

    Article  PubMed  CAS  Google Scholar 

  8. Shibuya M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 2001;33(4):409–20.

    Article  PubMed  CAS  Google Scholar 

  9. Tsatsaris V, Goffin F, Munaut C, et al. Overexpression of the soluble vascular endothelial growth factor receptor in preeclamptic patients: pathophysiological consequences. J Clin Endocrinol Metab 2003;88(11):5555–63.

    Article  PubMed  CAS  Google Scholar 

  10. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376(6535):66–70.

    Article  PubMed  CAS  Google Scholar 

  11. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem 2001;276(29):26969–79.

    Article  PubMed  CAS  Google Scholar 

  12. Rahimi N, Dayanir V, Lashkari K. Receptor chimeras indicate that the vascular endothelial growth factor receptor-1 (VEGFR1) modulates mitogenic activity of VEGFR2 in endothelial cells. J Biol Chem 2000;275(22):16986–92.

    Article  PubMed  CAS  Google Scholar 

  13. Autiero M, Waltenberger J, Communi D, et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003;9(7):936–43.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 2005;109(3): 227–41.

    Article  CAS  Google Scholar 

  15. Kabrun N, Buhring HJ, Choi K, Ullrich A, Risau W, Keller G. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 1997;124(10):2039–48.

    PubMed  CAS  Google Scholar 

  16. Kaipainen A, Korhonen J, Pajusola K, et al. The related FLT4, FLT1, and KDR receptor tyrosine kinases show distinct expression patterns in human fetal endothelial cells. J Exp Med 1993;178(6):2077–88.

    Article  PubMed  CAS  Google Scholar 

  17. Hatva E, Kaipainen A, Mentula P, et al. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 1995;146(2):368–78.

    PubMed  CAS  Google Scholar 

  18. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995;376(6535):62–6.

    Article  PubMed  CAS  Google Scholar 

  19. Tammela T, Petrova TV, Alitalo K. Molecular lymphangiogenesis: new players. Trends Cell Biol 2005;15(8):434–41.

    Article  PubMed  CAS  Google Scholar 

  20. Partanen TA, Arola J, Saaristo A, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. Faseb J 2000;14(13):2087–96.

    Article  PubMed  CAS  Google Scholar 

  21. Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 2003;163(1):57–68.

    PubMed  CAS  Google Scholar 

  22. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998;282(5390):946–9.

    Article  PubMed  CAS  Google Scholar 

  23. Karkkainen MJ, Ferrell RE, Lawrence EC, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet 2000;25(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  24. Dery MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 2005;37(3):535–40.

    Article  PubMed  CAS  Google Scholar 

  25. Pages G, Pouyssegur J. Transcriptional regulation of the Vascular Endothelial Growth Factor gene–a concert of activating factors. Cardiovasc Res 2005;65(3):564–73.

    Article  PubMed  CAS  Google Scholar 

  26. Elvert G, Kappel A, Heidenreich R, et al. Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 2003;278(9):7520–30.

    Article  PubMed  CAS  Google Scholar 

  27. Oettgen P. Regulation of vascular inflammation and remodeling by ETS factors. Circ Res 2006;99(11):1159–66.

    Article  PubMed  CAS  Google Scholar 

  28. Dixelius J, Makinen T, Wirzenius M, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 2003;278(42):40973–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ito N, Claesson-Welsh L. Dual effects of heparin on VEGF binding to VEGF receptor-1 and transduction of biological responses. Angiogenesis 1999;3(2):159–66.

    Article  PubMed  CAS  Google Scholar 

  30. Huang K, Andersson C, Roomans GM, Ito N, Claesson-Welsh L. Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers. Int J Biochem Cell Biol 2001;33(4):315–24.

    Article  PubMed  CAS  Google Scholar 

  31. Ito N, Wernstedt C, Engstrom U, Claesson-Welsh L. Identification of vascular endothelial growth factor receptor-1 tyrosine phosphorylation sites and binding of SH2 domain-containing molecules. J Biol Chem 1998;273(36):23410–8.

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham SA, Arrate MP, Brock TA, Waxham MN. Interactions of FLT-1 and KDR with phospholipase C gamma: identification of the phosphotyrosine binding sites. Biochem Biophys Res Commun 1997;240(3):635–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dougher-Vermazen M, Hulmes JD, Bohlen P, Terman BI. Biological activity and phosphorylation sites of the bacterially expressed cytosolic domain of the KDR VEGF-receptor. Biochem Biophys Res Commun 1994;205(1):728–38.

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto T, Bohman S, Dixelius J, et al. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. Embo J 2005;24(13):2342–53.

    Article  PubMed  CAS  Google Scholar 

  35. Meyer RD, Mohammadi M, Rahimi N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR1/FLT-1. J Biol Chem 2006;281(2):867–75.

    Article  PubMed  CAS  Google Scholar 

  36. Zeng H, Zhao D, Yang S, Datta K, Mukhopadhyay D. Heterotrimeric G alpha q/G alpha 11 proteins function upstream of vascular endothelial growth factor (VEGF) receptor-2 (KDR) phosphorylation in vascular permeability factor/VEGF signaling. J Biol Chem 2003;278(23):20738–45.

    Article  PubMed  CAS  Google Scholar 

  37. Kappert K, Peters KG, Bohmer FD, Ostman A. Tyrosine phosphatases in vessel wall signaling. Cardiovasc Res 2005;65(3): 587–98.

    Article  PubMed  CAS  Google Scholar 

  38. Baumer S, Keller L, Holtmann A, et al. Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood 2006;107(12): 4754–62.

    Article  PubMed  CAS  Google Scholar 

  39. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E. Vascular endothelial cadherin controls VEGFR2 internalization and signaling from intracellular compartments. J Cell Biol 2006;174(4):593–604.

    Article  PubMed  CAS  Google Scholar 

  40. Gallicchio M, Mitola S, Valdembri D, et al. Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood 2005;105(5):1970–6.

    Article  PubMed  CAS  Google Scholar 

  41. Singh AJ, Meyer RD, Band H, Rahimi N. The carboxyl terminus of VEGFR2 is required for PKC-mediated down-regulation. Mol Biol Cell 2005;16(4):2106–18.

    Article  PubMed  CAS  Google Scholar 

  42. Ewan LC, Jopling HM, Jia H, et al. Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 2006;7(9):1270–82.

    Article  PubMed  CAS  Google Scholar 

  43. Gampel A, Moss L, Jones MC, Brunton V, Norman JC, Mellor H. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 2006;108(8): 2624–31.

    Article  PubMed  CAS  Google Scholar 

  44. Duval M, Bedard-Goulet S, Delisle C, Gratton JP. Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 2003;278(22):20091–7.

    Article  PubMed  CAS  Google Scholar 

  45. Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 2002;71: 435–71.

    Article  PubMed  CAS  Google Scholar 

  46. Dougher AM, Wasserstrom H, Torley L, et al. Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors 1997;14(4):257–68.

    Article  PubMed  CAS  Google Scholar 

  47. Jakobsson L, J. K, K. H, et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 2006.

    Google Scholar 

  48. Fujisawa H, Kitsukawa T, Kawakami A, Takagi S, Shimizu M, Hirata T. Roles of a neuronal cell-surface molecule, neuropilin, in nerve fiber fasciculation and guidance. Cell Tissue Res 1997;290(2):465–70.

    Article  PubMed  CAS  Google Scholar 

  49. Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD. Neuropilin is a semaphorin III receptor. Cell 1997;90(4):753–62.

    Article  PubMed  CAS  Google Scholar 

  50. He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997;90(4):739–51.

    Article  PubMed  CAS  Google Scholar 

  51. Kruger RP, Aurandt J, Guan KL. Semaphorins command cells to move. Nat Rev Mol Cell Biol 2005;6(10):789–800.

    Article  PubMed  CAS  Google Scholar 

  52. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92(6):735–45.

    Article  PubMed  CAS  Google Scholar 

  53. Kitsukawa T, Shimizu M, Sanbo M, et al. Neuropilin- semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 1997;19(5): 995–1005.

    Article  PubMed  CAS  Google Scholar 

  54. Shintani Y, Takashima S, Asano Y, et al. Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. Embo J 2006;25(13):3045–55.

    Article  PubMed  CAS  Google Scholar 

  55. Karpanen T, Heckman CA, Keskitalo S, et al. Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. Faseb J 2006;20(9):1462–72.

    Article  PubMed  CAS  Google Scholar 

  56. Giger RJ, Cloutier JF, Sahay A, et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 2000;25(1):29–41.

    Article  PubMed  CAS  Google Scholar 

  57. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002;129(20):4797–806.

    PubMed  CAS  Google Scholar 

  58. Carpenter G, Ji Q. Phospholipase C-gamma as a signal-transducing element. Exp Cell Res 1999;253(1):15–24.

    Article  PubMed  CAS  Google Scholar 

  59. Takahashi T, Ueno H, Shibuya M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 1999;18(13):2221–30.

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. Embo J 2001;20(11):2768–78.

    Article  PubMed  CAS  Google Scholar 

  61. Sakurai Y, Ohgimoto K, Kataoka Y, Yoshida N, Shibuya M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc Natl Acad Sci U S A 2005; 102(4):1076–81.

    Article  PubMed  CAS  Google Scholar 

  62. Holmqvist K, Cross MJ, Rolny C, et al. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 2004;279(21):22267–75.

    Article  PubMed  CAS  Google Scholar 

  63. Warner AJ, Lopez-Dee J, Knight EL, Feramisco JR, Prigent SA. The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells. Biochem J 2000;347(Pt 2):501–9.

    Article  PubMed  CAS  Google Scholar 

  64. Liao HJ, Kume T, McKay C, Xu MJ, Ihle JN, Carpenter G. Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice. J Biol Chem 2002;277(11):9335–41.

    Article  PubMed  CAS  Google Scholar 

  65. Lawson ND, Mugford JW, Diamond BA, Weinstein BM. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 2003;17(11):1346–51.

    Article  PubMed  CAS  Google Scholar 

  66. Kamba T, Tam BY, Hashizume H, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 2006;290(2):H560–76.

    Article  PubMed  CAS  Google Scholar 

  67. Brader S, Eccles SA. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori 2004;90(1):2–8.

    PubMed  CAS  Google Scholar 

  68. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7(8):606–19.

    Article  PubMed  CAS  Google Scholar 

  69. Gille H, Kowalski J, Yu L, et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration. Embo J 2000;19(15):4064–73.

    Article  PubMed  CAS  Google Scholar 

  70. Qi JH, Claesson-Welsh L. VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 2001;263(1):173–82.

    Article  PubMed  CAS  Google Scholar 

  71. Carmeliet P, Lampugnani MG, Moons L, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999;98(2):147–57.

    Article  PubMed  CAS  Google Scholar 

  72. Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 2004;15(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  73. Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999;399(6736):597–601.

    Article  PubMed  CAS  Google Scholar 

  74. Phung TL, Ziv K, Dabydeen D, et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 2006;10(2):159–70.

    Article  PubMed  CAS  Google Scholar 

  75. Welch HC, Coadwell WJ, Stephens LR, Hawkins PT. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett 2003;546(1):93–7.

    Article  PubMed  CAS  Google Scholar 

  76. Lamont RE, Childs S. MAPping out arteries and veins. Sci STKE 2006;2006(355):pe39.

    Article  Google Scholar 

  77. Im E, Kazlauskas A. Regulating angiogenesis at the level of PtdIns-4, 5–P2. Embo J 2006;25(10):2075–82.

    Article  PubMed  CAS  Google Scholar 

  78. Ahmad S, Hewett PW, Wang P, et al. Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ Res 2006;99(7):715–22.

    Article  PubMed  CAS  Google Scholar 

  79. Wu LW, Mayo LD, Dunbar JD, et al. VRAP is an adaptor protein that binds KDR, a receptor for vascular endothelial cell growth factor. J Biol Chem 2000;275(9):6059–62.

    Article  PubMed  CAS  Google Scholar 

  80. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999;4(6): 915–24.

    Article  PubMed  CAS  Google Scholar 

  81. Weis S, Shintani S, Weber A, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 2004;113(6):885–94.

    PubMed  CAS  Google Scholar 

  82. Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost 2001;86(1):308–15.

    PubMed  CAS  Google Scholar 

  83. Wallez Y, Cand F, Cruzalegui F, et al. Src kinase phosphorylates vascular endothelial-cadherin in response to vascular endothelial growth factor: identification of tyrosine 685 as the unique target site. Oncogene 2007;26(7):1067–77.

    Article  PubMed  CAS  Google Scholar 

  84. Lambeng N, Wallez Y, Rampon C, et al. Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res 2005;96(3):384–91.

    Article  PubMed  CAS  Google Scholar 

  85. Shu X, Wu W, Mosteller RD, Broek D. Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 2002;22(22):7758–68.

    Article  PubMed  CAS  Google Scholar 

  86. Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 2001;276(52):49289–98.

    Article  PubMed  CAS  Google Scholar 

  87. Parsons JT, Martin KH, Slack JK, Taylor JM, Weed SA. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 2000;19(49):5606–13.

    Article  PubMed  CAS  Google Scholar 

  88. Yamaoka-Tojo M, Ushio-Fukai M, Hilenski L, et al. IQGAP1, a novel vascular endothelial growth factor receptor binding protein, is involved in reactive oxygen species–dependent endothelial migration and proliferation. Circ Res 2004;95(3): 276–83.

    Article  PubMed  CAS  Google Scholar 

  89. Lamalice L, Houle F, Huot J. Phosphorylation of Tyr1214 within VEGFR2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem 2006;281(45):34009–20.

    Article  PubMed  CAS  Google Scholar 

  90. Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006;16(10): 522–9.

    Article  PubMed  CAS  Google Scholar 

  91. Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L. p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol 2002;156(1):149–60.

    Article  PubMed  CAS  Google Scholar 

  92. Stoletov KV, Gong C, Terman BI. Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation. Exp Cell Res 2004;295(1):258–68.

    Article  PubMed  CAS  Google Scholar 

  93. le Noble F, Fleury V, Pries A, Corvol P, Eichmann A, Reneman RS. Control of arterial branching morphogenesis in embryogenesis: go with the flow. Cardiovasc Res 2005;65(3):619–28.

    Article  PubMed  CAS  Google Scholar 

  94. Shin D, Garcia-Cardena G, Hayashi S, et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 2001;230(2):139–50.

    Article  PubMed  CAS  Google Scholar 

  95. Hong CC, Peterson QP, Hong JY, Peterson RT. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol 2006;16(13):1366–72.

    Article  PubMed  CAS  Google Scholar 

  96. Weinstein BM, Lawson ND. Arteries, veins, Notch, and VEGF. Cold Spring Harb Symp Quant Biol 2002;67:155–62.

    Article  PubMed  CAS  Google Scholar 

  97. Dvorak HF. Discovery of vascular permeability factor (VPF). Exp Cell Res 2006;312(5):522–6.

    Article  PubMed  CAS  Google Scholar 

  98. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219(4587):983–5.

    Article  PubMed  CAS  Google Scholar 

  99. Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 2001;49(4):419–32.

    PubMed  CAS  Google Scholar 

  100. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004;84(3):869–901.

    Article  PubMed  CAS  Google Scholar 

  101. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006;8(11):1223–34.

    Article  PubMed  CAS  Google Scholar 

  102. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vascul Pharmacol 2003;39(4–5):225–37.

    Google Scholar 

  103. Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 2001;98(5):2604–9.

    Article  PubMed  CAS  Google Scholar 

  104. Takahashi H, Hattori S, Iwamatsu A, Takizawa H, Shibuya M. A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem 2004;279(44):46304–14.

    Article  PubMed  CAS  Google Scholar 

  105. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380(6573):435–9.

    Article  PubMed  CAS  Google Scholar 

  106. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996;380(6573):439–42.

    Article  PubMed  CAS  Google Scholar 

  107. Miquerol L, Gertsenstein M, Harpal K, Rossant J, Nagy A. Multiple developmental roles of VEGF suggested by a LacZ-tagged allele. Dev Biol 1999;212(2):307–22.

    Article  PubMed  CAS  Google Scholar 

  108. Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 2001;153(3):543–53.

    Article  PubMed  CAS  Google Scholar 

  109. Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005;437(7057):426–31.

    Article  PubMed  CAS  Google Scholar 

  110. Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: A sticky business. Exp Cell Res 2006;312(5):651–8.

    Article  PubMed  CAS  Google Scholar 

  111. Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 2006;312(5):630–41.

    Article  PubMed  CAS  Google Scholar 

  112. Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007.

    Google Scholar 

  113. Hellstrom M, Phng LK, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 2007;445(7129):776–80.

    Article  PubMed  CAS  Google Scholar 

  114. Pan Q, Chanthery Y, Liang WC, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 2007;11(1):53–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kawamura, H., Li, X., Welsh, M., Claesson-Welsh, L. (2008). VEGF Signal Tranduction in Angiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics