Skip to main content

Size Information in the Production and Perception of Communication Sounds

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 29))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcántara JI, Moore1 BCJ (1995) The identification of vowel-like harmonic complexes: Effect of component phase, level and fundamental frequency. J Acoust Soc Am 97:3813–3824.

    Article  PubMed  Google Scholar 

  • Assmann PF, Katz WF (2005) Synthesis fidelity and time-varying spectral change in vowels. J Acoust Soc Am 117:886–895.

    Article  PubMed  Google Scholar 

  • Beckford NS, Rood SR, Schaid D (1985) Androgen stimulation and laryngeal development. Ann Otol Rhinol Laryngol 94: 634–640.

    PubMed  CAS  Google Scholar 

  • Boersma P (2001) Praat, a system for doing phonetics by computer. Glot Int 5(9/10): 341–345.

    Google Scholar 

  • Chiba T, Kajiyama M (1942) The Vowel: Its Nature and Structure. Tokyo: Tokyo-Kaiseikan.

    Google Scholar 

  • Cohen L (1993) The scale transform. IEEE Trans Acoust Speech Signal Proc 41:3275–3292.

    Google Scholar 

  • Cooke M (2006) A glimpsing model of speech perception in noise. J Acoust Soc Am 119:1562–1573.

    Article  PubMed  Google Scholar 

  • Drennan W (1998) Sources of variation in profile analysis: Individual differences, extended training, roving level, component spacing and dynamic contour. PhD thesis, Indiana University.

    Google Scholar 

  • Fant G (1970) Acoustic Theory of Speech Production, 2nd ed. Paris: Mouton.

    Google Scholar 

  • Fitch WT, Giedd J (1999) Morphology and development of the human vocal tract: A study using magnetic resonance imaging. J Acoust Soc Am 106:1511–1522.

    Article  PubMed  CAS  Google Scholar 

  • Fitch WT, Reby D (2001) The descended larynx is not uniquely human. Proc R Soc Lond B 268:1669–1675.

    Article  CAS  Google Scholar 

  • Fletcher NH, Rossing TD (1998) The Physics of Musical Instruments. New York: Springer-Verlag.

    Google Scholar 

  • Gomersall P, Walters T, Turner R, Patterson RD (2004) The relative contribution of glottal pulse rate and vocal tract length in size discrimination judgements. Poster presented at the British Society of Audiology meeting, Sept. London (available on the CNBH Website: http://www.pdn.cam.ac.uk/cnbh/).

    Google Scholar 

  • González, J (2004) Formant frequencies and body size of speaker: A weak relationship in adult humans. J Phonet 32:277–287.

    Article  Google Scholar 

  • Goto M, Hashiguchi H, Nishimura T, Oka R (2003) RWC music database: Music genre database and musical instrument sound database. In ISMIR is International Symposium on Music Information Retrieval. pp. 229–230.

    Google Scholar 

  • Green DM (1988) Profile Analysis. London: Oxford University Press.

    Google Scholar 

  • Hollien H, Green R, Massey K (1994) Longitudinal research on adolescent voice change in males. J Acoust Soc Am 96:3099–3111.

    Article  Google Scholar 

  • Huber JE, Stathopoulos ET, Curione GM, Ash T, Johnson K (1999) Formants of children, women and men: The effects of vocal intensity variation. J Acoust Soc Am 106:1532–1542.

    Article  PubMed  CAS  Google Scholar 

  • Irino T, Patterson RD (2002) Segregating information about the size and shape of the vocal tract using a time-domain auditory model: The stabilized wavelet-Mellin transform. Speech Commun 36:181–203.

    Article  Google Scholar 

  • Ives DT, Smith, DRR, Patterson RD (2005) Discrimination of speaker size from syllable phrases. J Acoust Soc Am 118:3816–3822.

    Article  PubMed  Google Scholar 

  • Kawahara H, Irino T (2004) Underlying principles of a high-quality speech manipulation system STRAIGHT and its application to speech segregation. In: Divenyi P (ed) Speech Segregation by Humans and Machines. Dordrecht: Kluwer Academic, pp. 167–180.

    Google Scholar 

  • Kawahara H, Masuda-Kasuse I, de Cheveigne A (1999) Restructuring speech representations using pitch-adaptive time-frequency smoothing and instantaneous-frequency-based F0 extraction: Possible role of repetitive structure in sounds. Speech Commun 27(3–4):187–207.

    Article  Google Scholar 

  • Krumbholz K, Patterson RD, Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. J Acoust Soc Am 108:1170–1180.

    Article  PubMed  CAS  Google Scholar 

  • Künzel HJ (1989) How well does average fundamental frequency correlate with speaker height and weight? Phonetica 46:117–125.

    Article  PubMed  Google Scholar 

  • Ladefoged P, Broadbent DE (1957) Information conveyed by vowels. J Acoust Soc Am 29:98–104.

    Article  Google Scholar 

  • Lass NJ, Brown WS (1978) Correlational study of speakers, heights, weights, body surface areas and speaking fundamental frequencies. J Acoust Soc Am 63:1218–1220.

    Article  PubMed  CAS  Google Scholar 

  • Leek MR, Dorman MF, Summerfield Q (1987) Minimum spectral contrast for vowel identification by normal-hearing and hearing-impaired listeners. J Acoust Soc Am 81:148–154.

    Article  PubMed  CAS  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–133.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Kewley-Port D (2004) STRAIGHT: A new speech synthesizer for vowel formant discrimination. ARLO 5:31–36.

    Article  Google Scholar 

  • Lloyd RJ (1890) Speech sounds: Their nature and causation (I). Phoneticia Studien 3:251-278.

    Google Scholar 

  • Marcus SM (1981) Acoustic determinants of perceptual centre (P-centre) location. Percept Psychophys 30:247–256.

    PubMed  CAS  Google Scholar 

  • Meddis R, Hewitt MJ (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J Acoust Soc Am 89:2866–2882.

    Article  Google Scholar 

  • Miller GA (1947) Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. J Acoust Soc Am 19:609–619.

    Article  Google Scholar 

  • Miller JD (1989) Auditory-perceptual interpretation of the vowel. J Acoust Soc Am 85:2114–2133.

    Article  PubMed  CAS  Google Scholar 

  • Owren MJ, Anderson JD (2005) Voices of athletes reveal only modest acoustic correlates of stature. J Acoust Soc Am 117:2375.

    Google Scholar 

  • Patterson RD (1994) The sound of a sinusoid: Time-interval models. J Acoust Soc Am 96:1419–1428.

    Article  Google Scholar 

  • Patterson RD, Holdsworth J (1996) A functional model of neural activity patterns and auditory images. In: Ainsworth WA (ed) Advances in Speech, Hearing and Language Processing, Vol. 3, Part B. London: JAI Press.

    Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand MH (1992) Complex sounds and auditory images. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception, Proceedings of the 9th International Symposium on Hearing. Oxford: Pergamon Press, pp. 429–446.

    Google Scholar 

  • Patterson RD, Allerhand M, Giguére C (1995) Time domain modeling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.

    Article  PubMed  CAS  Google Scholar 

  • Patterson RD, Anderson TR, Francis K (2006) Binaural auditory images for noise-resistant speech recognition. In: Ainsworth W, Greenberg S (eds) Listening to Speech: An Auditory perspective. The Publisher, LEA, is Lawrence Erlbaum Associates City is Mahwah, NJ pp. 257–269.

    Google Scholar 

  • Peterson GE, Barney HL (1952) Control methods used in the study of vowels. J Acoust Soc Am 24:175–184.

    Article  Google Scholar 

  • Pressnitzer D, Patterson RD, Krumbholz K (2001) The lower limit of melodic pitch. J Acoust Soc Am 109:2074–2084.

    Article  PubMed  CAS  Google Scholar 

  • Reimann HM (2006) Invariance principles for cochlear mechanics: Hearing phases. J Acoust Soc Am 119:997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Rendall D, Vokey JR, Nemeth C, Ney C (2005) Reliable but weak voice-formant cues to body size in men but not women. J Acoust Soc Am 117:2372.

    Article  Google Scholar 

  • Ritsma RJ, Hoekstra A (1974) Frequency selectivity and the tonal residue. In: Zwicker E, Terhardt E (eds) Facts and Models in Hearing. Berlin: Springer, pp. 156–163.

    Google Scholar 

  • Schouten JF (1938) The perception of subjective tones. Proc Kon Ned Akad Wetensch 41:1086–1093.

    Google Scholar 

  • Scott SK (1993) P-centres in speech an acoustic analysis. PhD thesis, University College London.

    Google Scholar 

  • Slaney M, Lyon RF (1990) A perceptual pitch detector. In: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Albuquerque, New Mexico.

    Google Scholar 

  • Smith DRR, Patterson RD (2005) The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex and age. J Acoust Soc Am 118:3177–3186.

    Article  PubMed  Google Scholar 

  • Smith DRR, Patterson RD, Turner R, Kawahara H, Irino T (2005) The processing and perception of size information in speech sounds. J Acoust Soc Am 117:305–318.

    Article  PubMed  Google Scholar 

  • Spiegel MF, Picardi MC, Green DM (1981) Signal and masker uncertainty in intensity discrimination. J Acoust Soc Am 70:1015–1019.

    Article  PubMed  CAS  Google Scholar 

  • Sprague MW (2000) The single sonic twitch model for the sound production mechanism in the weakfish, Cynoscion regalis. J Acoust Soc Am 108:2430–2437.

    Article  PubMed  CAS  Google Scholar 

  • Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Thurlow WR, Small AM Jr (1955) Pitch perception for certain periodic auditory stimuli. J Acoust Soc Am 27:132–137.

    Article  Google Scholar 

  • Titze IR (1989) Physiologic and acoustic differences between male and female voices. J Acoust Soc Am 85:1699–1707.

    Article  PubMed  CAS  Google Scholar 

  • Turner RE, Al-Hames MA, Smith DRR, Kawahara H, Irino T, Patterson RD (2006) Vowel normalisation: Time-domain processing of the internal dynamics of speech. In: Divenyi P, Greenberg S, Meyer G. (eds) Dynamics of Speech Production and Perception. Amsterdam: IOS Press, pp. 153–170.

    Google Scholar 

  • van Dinther R, Patterson RD (2006) Perception of acoustic scale and size in musical instrument sounds. J Acoust Soc Am 120:2158–2176.

    Article  PubMed  Google Scholar 

  • Welling L, Ney H (2002) Speaker adaptive modelling by vocal tract normalization. IEEE Trans Speech Audio Process 10:415–426.

    Article  Google Scholar 

  • Yang C-S, Kasuya H (1995) Dimension differences in the vocal tract shapes measured from MR images across boy, female and male subjects. J Acoust Soc Jpn E 16:41–44.

    Google Scholar 

  • Yost WA, Patterson RD, Sheft S (1996) A time-domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Patterson, R.D., Smith, D.R., Dinther, R.v., Walters, T.C. (2008). Size Information in the Production and Perception of Communication Sounds. In: Yost, W.A., Popper, A.N., Fay, R.R. (eds) Auditory Perception of Sound Sources. Springer Handbook of Auditory Research, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71305-2_3

Download citation

Publish with us

Policies and ethics