Skip to main content

Ginger and Turmeric Ancient Spices and Modern Medicines

  • Chapter

Part of the Plant Genetics and Genomics: Crops and Models book series (PGG,volume 1)

Abstract

Ginger and turmeric have been used in human cuisine and in traditional medicinal practice for thousands of years. They are widely popular spices used extensively in Asian cuisine and growing in use in western cuisine. They have been used as medicinal plants, due to their anti-inflammatory properties, to treat a wide array of illnesses and conditions, such as arthritis (osteo and rheumatoid), inflammatory bowel disease, cancer, Alzheimer’s disease, the common cold, etc. Two groups of compounds, the diarylheptanoids (including the curcuminoids) and the gingerolrelated compounds, are potent anti-inflammatory compounds and contribute to, or are responsible for, many of the medicinal properties in these plants. They also contribute to the color of turmeric used in curries and to the pungency of ginger. Several of these compounds, most notably curcumin and [6]-gingerol, are now the targets of drug development. Despite their great medicinal and culinary importance, very little basic scientific research has been done on these plants. This is now changing.Belonging to the ingiberaceae, they are members of the Zingiberales. The closest relative to this large group of plants that has been studied in some detail is banana (Musa spp, see chapter in this book), although that plant is not that closely related. The relationships of these plants to other plant groups, their diversity, their production, and recent and proposed efforts to understand the genetic and genomic makeup of these plants are discussed.

Keywords

  • Motion Sickness
  • Shikimic Acid
  • Curcuma Longa
  • Ginger Extract
  • Tetraploid Clone

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-71219-2_12
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-71219-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adaniya S, Shirai D (2001) In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci Hortic 88:277–287

    CrossRef  Google Scholar 

  • Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    PubMed  CAS  Google Scholar 

  • Altman RD, Marcussen KC (2001) Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum 44:2531–2538

    PubMed  CrossRef  CAS  Google Scholar 

  • Ammon HP, Anazodo MI, Safayhi H, Dhawan BN, Srimal RC (1992) Curcumin: a potent inhibitor of leukotriene B4 formation in rat peritoneal polymorphonuclear neutrophils (PMNL). Planta Med 58:226

    PubMed  CrossRef  CAS  Google Scholar 

  • Andersson L, Chase MW (2001) Phylogeny and classification of Marantaceae. Botanical Linnean Society 135:275–287

    CrossRef  Google Scholar 

  • Atamna H, Boyle K (2006) Amyloid-beta peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer’s disease. Proc Natl Acad Sci USA 103:3381–3386

    PubMed  CrossRef  CAS  Google Scholar 

  • Balasubramanian S, Eckert RL (2006) Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J Biol Chem 282:6707–6715

    PubMed  CrossRef  CAS  Google Scholar 

  • Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9:161–168

    PubMed  CrossRef  Google Scholar 

  • Chase MW (2004) Monocot relationships: An overview Am J Bot 91:1645–1655

    CAS  Google Scholar 

  • College JNM (1985) The Dictionary of Traditional Chinese Medicine. (Shanghai: Shanghai Sci-Tech Press

    Google Scholar 

  • Davis JI (1995) A phylogenetic structure for the Monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. Syst Bot 20:503–527

    CrossRef  Google Scholar 

  • Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, et al. (2004) A Phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. Syst Bot 29:467–510

    CrossRef  Google Scholar 

  • Deeb DD, Jiang H, Gao X, Divine G, Dulchavsky SA, et al. (2005) Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL-induced apoptosis. J Exp Ther Oncol 5:81–91

    PubMed  CAS  Google Scholar 

  • Dikshit P, Goswami A, Mishra A, Chatterjee M, Jana NR (2006) Curcumin induces stress response, neurite outgrowth and prevent NF-kappaB activation by inhibiting the proteasome function. Neurotox Res 9:29–37

    PubMed  CAS  CrossRef  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, et al. (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    PubMed  CrossRef  CAS  Google Scholar 

  • Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, et al. (2004) Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 304:600–602

    Google Scholar 

  • Grant KL, Lutz R (2000) Ginger Am J Health Syst Pharm 57:945–947

    CAS  Google Scholar 

  • Grant KL, Schneider CD (2000) Turmeric Am J Health Syst Pharm 57:1121–1122

    Google Scholar 

  • Jiang H, Timmermann BN, Gang DR (2006a) Use of liquid chromatography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric (Curcuma longa L.) rhizome. J Chromatogr A 1111:21–31

    CrossRef  CAS  Google Scholar 

  • Jiang H, Solyom AM, Timmermann BN, Gang DR (2005a) Characterization of gingerol-related compounds in ginger rhizome (Zingiber officinale Rosc.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:2957–2964

    CrossRef  CAS  Google Scholar 

  • Jiang H, Somogyi A, Jacobsen NE, Timmermann BN, Gang DR (2006b) Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1001–1012

    CrossRef  CAS  Google Scholar 

  • Jiang H, Xie Z, Koo H, McLaughlin SP, Timmermann BN, Gang DR (2005b) Metabolic profiling, phylogenetic analysis and anti-inflammatory investigation of Zingiber species: tools for authentication of ginger (Zingiber officinale Rosc.). Phytochem 67:232–244 doi:210.1016/j.phytochem.2005.1008.1001

    Google Scholar 

  • Jiang H, Xie Z, Koo HJ, McLaughlin SP, Timmermann BN, Gang DR (2006c) Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc). Phytochemistry 67:1673–1685

    CrossRef  CAS  Google Scholar 

  • Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111

    PubMed  CrossRef  CAS  Google Scholar 

  • Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, et al. (2004) Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry 65:1937–1954

    PubMed  CrossRef  CAS  Google Scholar 

  • Keating A, Chez RA (2002) Ginger syrup as an antiemetic in early pregnancy. Altern Ther Health Med 8:89–91

    PubMed  Google Scholar 

  • Kress WJ, Prince LM, Williams KJ (2002) The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. Am J Bot 89:1682–1696

    CAS  Google Scholar 

  • Lacroix R, Eason E, Melzack R (2000) Nausea and vomiting during pregnancy: A prospective study of its frequency, intensity, and patterns of change. Am J Obstet Gynecol 182:931–937

    PubMed  CrossRef  CAS  Google Scholar 

  • Langner E, Greifenberg S, Gruenwald O (1998) Ginger: history and use. Adv Ther 15:25–44

    PubMed  CAS  Google Scholar 

  • Lien HC, Sun WM, Chen YH, Kim H, Hasler W, et al. (2003) Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am J Physiol Gastrointest Liver Physiol 284:481–489

    Google Scholar 

  • Ma X, Gang DR (2006) Metabolic profiling of turmeric (Curcuma longa L.) plants derived from in vitro micropropagation and conventional greenhouse cultivation. J Agric Food Chem 54:9573–9583

    PubMed  CrossRef  CAS  Google Scholar 

  • Ono K, Naiki H, Yamada M (2006) The development of preventives and therapeutics for Alzheimer’s disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta. Curr Pharm Des 12:4357–4375

    PubMed  CrossRef  CAS  Google Scholar 

  • Rapaka RS, Coates PM (2006) Dietary supplements and related products: a brief summary. Life Sci 78:2026–2032

    PubMed  CrossRef  CAS  Google Scholar 

  • Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136

    PubMed  CrossRef  CAS  Google Scholar 

  • Sasaki Y, Fushimi H, Cao H, Cai SQ, Komatsu K (2002) Sequence analysis of Chinese and Japanese Curcuma drugs on the 18S rRNA gene and trnK gene and the application of amplification-refractory mutation system analysis for their authentication. Biol Pharm Bull 25:1593–1599

    PubMed  CrossRef  CAS  Google Scholar 

  • Smith C, Crowther C, Willson K, Hotham N, McMillian V (2004a) A randomized controlled trial of ginger to treat nausea and vomiting in pregnancy. Obstet Gynecol 103:639–645

    Google Scholar 

  • Smith MK, Hamill SD, Gogel BJ, Severn-Ellis AA (2004b) Ginger (Zingiber officinale) autotetraploids with improved processing quality produced by an in vitro colchicine treatment. Aust J Exp Agric 44:1065–1072

    CrossRef  CAS  Google Scholar 

  • Specht CD, Kress WJ, Sevenson DW, Rob D (2001) A molecular phylogeny of Costaceae (Zingiberales). Molec Phyl Evol 21:333–345

    CrossRef  CAS  Google Scholar 

  • Srivastava KC, Mustafa T (1992) Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med Hypotheses 39:342–348

    PubMed  CrossRef  CAS  Google Scholar 

  • Stewart JJ, Wood MJ, Wood CD, Mims ME (1991) Effects of ginger on motion sickness susceptibility and gastric function. Pharmacology 42:111–120

    PubMed  CAS  CrossRef  Google Scholar 

  • Syed A, Upton C (2006) Java GUI for InterProScan (JIPS): a tool to help process multiple InterProScans and perform ortholog analysis. BMC Bioinformatics 7:462

    PubMed  CrossRef  CAS  Google Scholar 

  • Vutyavanich T, Kraisarin T, Ruangsri RA (2001) Ginger for nausea and vomiting in pregnancy: Randomized, double-masked, placebo-controlled trial. Obstet Gynecol 97:577–582

    PubMed  CrossRef  CAS  Google Scholar 

  • Wigler I, Grotto I, Caspi D, Yaron M (2003) The effects of Zintona EC (a ginger extract) on symptomatic gonarthritis. Osteoarthritis Cartilage 11:783–789

    PubMed  CrossRef  CAS  Google Scholar 

  • Willetts KE, Ekangaki A, Eden JA (2003) Effect of a ginger extract on pregnancy-induced nausea: a randomised controlled trial. Aust N Z J Obstet Gynaecol 43:139–144

    PubMed  CrossRef  Google Scholar 

  • Wohlmuth H, Leach DN, Smith MK, Myers SP (2005) Gingerol content of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe). J Agric Food Chem 53:5772–5778

    PubMed  CrossRef  CAS  Google Scholar 

  • Wohlmuth H, Smith MK, Brooks LO, Myers SP, Leach DN (2006) Essential oil composition of diploid and tetraploid clones of ginger (Zingiber officinale roscoe) grown in Australia. J Agric Food Chem 54:1414–1419

    PubMed  CrossRef  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, et al. (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    PubMed  CrossRef  CAS  Google Scholar 

  • Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, et al. (2006) Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 26:85–90

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gang, D.R., Ma, XQ. (2008). Ginger and Turmeric Ancient Spices and Modern Medicines. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_12

Download citation