Designing, Building and Installing a Stereotactic Radiosurgery Unit

  • Lijun Ma
  • Martin Murphy


The first stereotactic radiosurgery (SRS) unit was designed by Swedish neurosurgeon Dr. Lars Leksell in the 1950s [1]. The term stereotactic literally means “spatially fixed.” In general, a SRS procedure involves delivering a single fraction of high-dose radiation, usually with the guidance of a rigid fixation device (i.e., a stereotactic frame). The purpose of the frame is to map out the coordinate system of the target for accurate reference of the radiation beams [2]–[6]. Common types of radiation used for SRS are high-energy gamma rays (e.g., 60Co), high-energy x-rays, and charged particles such as protons.


Radiat Oncol Biol Phys Trigeminal Neuralgia Gamma Knife Stereotactic Radiosurgery Electronic Portal Imaging Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leksell L. The stereotaxic method and radiosurgery of the brain, Acta Chir Scand 1951; 102(4):316–9.PubMedGoogle Scholar
  2. 2.
    Andrews DW, Scott CB, Sperduto PW, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 2004; 363(9422):1665–1672.CrossRefPubMedGoogle Scholar
  3. 3.
    Corn BW, Curran WJ Jr, Shrieve DC, et al. Stereotactic radiosurgery and radiotherapy: new developments and new directions. Semin Oncol 1997; 24(6):707–714.PubMedGoogle Scholar
  4. 4.
    Schell MC, Bova FJ, Larson DA, et al. Stereotactic Radiosurgery, Report of the American Association of Physicists in Medicine Task Group No. 42. College Park: American Institute of Physics, 1995.Google Scholar
  5. 5.
    Phillips MH, Stelzer KJ, Griffin TW, et al. Stereotactic radiosurgery: a review and comparison of methods. J Clin Oncol 1994; 12(5):1085–1099.PubMedGoogle Scholar
  6. 6.
    Loeffler JS, Shrieve DC, Wen PY, et al. Radiosurgery for intracranial malignancies. Semin Radiat Oncol 1995; 5(3):225–234.CrossRefPubMedGoogle Scholar
  7. 7.
    Harsh GR, Thornton AF, Chapman PH, et al. Proton beam stereotactic radiosurgery of vestibular schwannomas. Int J Radiat Oncol Biol Phys 2002; 54(1):35–44.PubMedGoogle Scholar
  8. 8.
    Larsson B, Leksell L, Rexed B, et al. The high-energy proton beam as a neurosurgical tool. Nature 1958; 182(4644):1222–1223.CrossRefPubMedGoogle Scholar
  9. 9.
    Larsson B, Sarby B. Equipment for radiation surgery using narrow 185 MeV proton beams. Dosimetry and design. Acta Oncol 1987; 26(2):143–158.CrossRefPubMedGoogle Scholar
  10. 10.
    Lawrence JH, Tobias CA, Linfoot JA, et al. Heavy particles and the Bragg peak in therapy. Ann Intern Med 1965; 62:400–407.PubMedGoogle Scholar
  11. 11.
    Levy RP, Fabrikant JI, Frankel KA, et al. Heavy-charged-particle radiosurgery of the pituitary gland: clinical results of 840 patients. Stereotact Funct Neurosurg 1991; 57(1–2):22–35.CrossRefPubMedGoogle Scholar
  12. 12.
    Weber DC, Chan AW, Bussiere MR, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery 2003; 53(3):577–586; discussion 586–588.CrossRefPubMedGoogle Scholar
  13. 13.
    McGinley PH, Butker EK, Crocker IR, et al. A patient rotator for stereotactic radiosurgery. Phys Med Biol 1990; 35(5):649–657.CrossRefPubMedGoogle Scholar
  14. 14.
    Leksell DG. Stereotactic radiosurgery. Present status and future trends. Neurol Res 1987; 9(2):60–68.PubMedGoogle Scholar
  15. 15.
    Lindquist C. Gamma Knife radiosurgery. Semin Radiat Oncol 1995; 5:197–202.CrossRefPubMedGoogle Scholar
  16. 16.
    Maitz AH, Wu A, Lunsford LD, et al. Quality assurance for gamma knife stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1995; 32(5):1465–1471.PubMedGoogle Scholar
  17. 17.
    Wu A, Lindner G, Maitz H, et al. Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiati Oncol Biol Phys 1990; 18:941–949.CrossRefGoogle Scholar
  18. 18.
    Bourland JD, McCollough KP. Static field conformal stereotactic radiosurgery: physical techniques. Int J Radiat Oncol Biol Phys 1994; 28(2):471–479.PubMedGoogle Scholar
  19. 19.
    Bova FJ, Friedman WA, Mendenhall WM. Stereotactic radiosurgery. Med Prog Technol 1992; 18(4):239–251.PubMedGoogle Scholar
  20. 20.
    Colombo F, Benedetti A, Pozza F, et al. Stereotactic radiosurgery utilizing a linear accelerator. Appl Neurophysiol 1985; 48(1–6):133–145.PubMedGoogle Scholar
  21. 21.
    Falco T, Lachaine M, Poffenbarger B, et al. Setup verification in linac-based radiosurgery. Med Phys 1999; 26(9):1972–1978.CrossRefPubMedGoogle Scholar
  22. 22.
    Friedman WA, Bova FJ, Spiegelmann R. Linear accelerator radiosurgery at the University of Florida. Neurosurg Clin N Am 1992; 3(1):141–166.PubMedGoogle Scholar
  23. 23.
    Leavitt DD, Watson G, Tobler M, et al. Intensity-modulated radiosurgery/radiotherapy using a micromultileaf collimator. Med Dosim 2001; 26(2):143–150.CrossRefPubMedGoogle Scholar
  24. 24.
    Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988; 14(2):373–381.PubMedGoogle Scholar
  25. 25.
    Nedzi LA, Kooy HM, Alexander E 3rd, et al. Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys 1993; 25(5):859–869.PubMedGoogle Scholar
  26. 26.
    Podgorsak EB, Olivier A, Pla M, J. Hazel, et al. Physical aspects of dynamic stereotactic radiosurgery. Appl Neurophysiol 1987; 50(1–6):263–268.PubMedGoogle Scholar
  27. 27.
    Podgorsak EB, Olivier A, Pla M, et al. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1988; 14(1):115–126.PubMedGoogle Scholar
  28. 28.
    Solberg TD, Boedeker KL, Fogg R, et al. Dynamic arc radiosurgery field shaping: a comparison with static field conformal and noncoplanar circular arcs. Int J Radiat Oncol Biol Phys 2001; 49(5):1481–1491.PubMedGoogle Scholar
  29. 29.
    Winston KR, Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 1988; 22(3):454–464.CrossRefPubMedGoogle Scholar
  30. 30.
    Colombo F, Francescon P, Cora S, et al. A simple method to verify in vivo the accuracy of target coordinates in linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 1998; 41(4):951–954.PubMedGoogle Scholar
  31. 31.
    Gibbs FA Jr, Buechler D, Leavitt DD, et al. Measurement of mechanical accuracy of isocenter in conventional linear-accelerator-based radiosurgery. Int J Radiat Oncol Biol Phys 1993; 25(1):117–122.PubMedGoogle Scholar
  32. 32.
    Boyer AL, Antonuk L, Fenster A, et al. A review of electronic portal imaging devices (EPIDs). Med Phys 1992; 19(1):1–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Leavitt DD, Gibbs FA Jr, Heilbrun MP. Dynamic field shaping to optimize stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1991; 21(5):1247–1255.PubMedGoogle Scholar
  34. 34.
    Pedroso AG, De Salles AA, Tajik K. Novalis shaped beam radiosurgery of arteriovenous malformations. J Neurosurg 2004; 101(Suppl 3):425–434.PubMedGoogle Scholar
  35. 35.
    Smith ZA, De Salles AA, Frighetto L. Dedicated linear accelerator radiosurgery for the treatment of trigeminal neuralgia. J Neurosurg 2003; 99(3):511–516.CrossRefPubMedGoogle Scholar
  36. 36.
    Rahimian J, Chen JC, Rao AA. Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J Neurosurg 2004; 101(Suppl 3):351–355.PubMedGoogle Scholar
  37. 37.
    Adler JR, Murphy MJ, Chang SD, et al. Image-guided robotic radiosurgery. Neurosurgery 1999; 44:299–306.Google Scholar
  38. 38.
    Murphy MJ, Cox RS. Dose localization accuracy for an image-guided frameless radiosurgery system. Med Phys 1996; 23(12):2043–2049.CrossRefPubMedGoogle Scholar
  39. 39.
    Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgery system. Neurosurgery 2003; 52:140–147.CrossRefPubMedGoogle Scholar
  40. 40.
    Mackie TR, Balog J, Ruchala K, et al. Tomotherapy. Semin Radiat Oncol 1999; 9(1):108–117.CrossRefPubMedGoogle Scholar
  41. 41.
    Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993; 20(6):1709–1719.CrossRefPubMedGoogle Scholar
  42. 42.
    Berk HW, Larner JM, Spaulding C, et al. Extracranial absorbed doses with Gamma Knife radiosurgery. Stereotact Funct Neurosurg 1993; 61(Suppl 1):164–172.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lijun Ma
    • 1
  • Martin Murphy
    • 2
  1. 1.Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Department of Radiation OncologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations