A General Survey of Privacy-Preserving Data Mining Models and Algorithms

  • Charu C. Aggarwal
  • Philip S. Yu
Part of the Advances in Database Systems book series (ADBS, volume 34)

In recent years, privacy-preserving data mining has been studied extensively, because of the wide proliferation of sensitive information on the internet. A number of algorithmic techniques have been designed for privacy-preserving data mining. In this paper, we provide a review of the state-of-the-art methods for privacy. We discuss methods for randomization, k-anonymization, and distributed privacy-preserving data mining. We also discuss cases in which the output of data mining applications needs to be sanitized for privacy-preservation purposes. We discuss the computational and theoretical limits associated with privacy-preservation over high dimensional data sets.

Keywords

Privacy-preserving data mining randomization k-anonymity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam N., Wortmann J. C.: Security-Control Methods for Statistical Databases: A Comparison Study. ACM Computing Surveys, 21(4), 1989.Google Scholar
  2. 2.
    Agrawal R., Srikant R. Privacy-Preserving Data Mining. Proceedings of the ACM SIGMOD Conference, 2000.Google Scholar
  3. 3.
    Agrawal R., Srikant R., Thomas D. Privacy-Preserving OLAP. Proceedings of the ACM SIGMOD Conference, 2005.Google Scholar
  4. 4.
    Agrawal R., Bayardo R., Faloutsos C., Kiernan J., Rantzau R., Srikant R.: Auditing Compliance via a hippocratic database. VLDB Conference, 2004.Google Scholar
  5. 5.
    Agrawal D. Aggarwal C. C. On the Design and Quantification of Privacy-Preserving Data Mining Algorithms. ACM PODS Conference, 2002.Google Scholar
  6. 6.
    Aggarwal C., Pei J., Zhang B. A Framework for Privacy Preservation against Adversarial Data Mining. ACM KDD Conference, 2006.Google Scholar
  7. 7.
    Aggarwal C. C. On k-anonymity and the curse of dimensionality. VLDB Conference, 2005.Google Scholar
  8. 8.
    Aggarwal C. C., Yu P. S.: A Condensation approach to privacy preserving data mining. EDBT Conference, 2004.Google Scholar
  9. 9.
    Aggarwal C. C., Yu P. S.: On Variable Constraints in Privacy-Preserving Data Mining. SIAM Conference, 2005.Google Scholar
  10. 10.
    Aggarwal C. C.: On Randomization, Public Information and the Curse of Dimensionality. ICDE Conference, 2007.Google Scholar
  11. 11.
    Aggarwal C. C., Yu P. S.: On Privacy-Preservation of Text and Sparse Binary Data with Sketches. SIAM Conference on Data Mining, 2007.Google Scholar
  12. 12.
    Aggarwal C. C., Yu P. S. On Anonymization of String Data. SIAM Conference on Data Mining, 2007.Google Scholar
  13. 13.
    Aggarwal G., Feder T., Kenthapadi K., Motwani R., Panigrahy R., Thomas D., Zhu A.: Anonymizing Tables. ICDT Conference, 2005.Google Scholar
  14. 14.
    Aggarwal G., Feder T., Kenthapadi K., Motwani R., Panigrahy R., Thomas D., Zhu A.: Approximation Algorithms for k-anonymity. Journal of Privacy Technology, paper 20051120001, 2005.Google Scholar
  15. 15.
    Aggarwal G., Feder T., Kenthapadi K., Khuller S., Motwani R., Panigrahy R., Thomas D., Zhu A.: Achieving Anonymity via Clustering. ACM PODS Conference, 2006.Google Scholar
  16. 16.
    Atallah, M., Elmagarmid, A., Ibrahim, M., Bertino, E., Verykios, V.: Disclosure limitation of sensitive rules, Workshop on Knowledge and Data Engineering Exchange, 1999.Google Scholar
  17. 17.
    Bawa M., Bayardo R. J., Agrawal R.: Privacy-Preserving Indexing of Documents on the Network. VLDB Conference, 2003.Google Scholar
  18. 18.
    Bayardo R. J., Agrawal R.: Data Privacy through Optimal k-Anonymization. Proceedings of the ICDE Conference, pp. 217–228, 2005.Google Scholar
  19. 19.
    Bertino E., Fovino I., Provenza L.: A Framework for Evaluating Privacy-Preserving Data Mining Algorithms. Data Mining and Knowledge Discovery Journal, 11(2), 2005.Google Scholar
  20. 20.
    Bettini C., Wang X. S., Jajodia S.: Protecting Privacy against Location Based Personal Identification. Proc. of Secure Data Management Workshop, Trondheim, Norway, 2005.Google Scholar
  21. 21.
    Biskup J., Bonatti P.: Controlled Query Evaluation for Known Policies by Combining Lying and Refusal. Annals of Mathematics and Artificial Intelligence, 40(1-2), 2004.Google Scholar
  22. 22.
    Blum A., Dwork C., McSherry F., Nissim K.: Practical Privacy: The SuLQ Framework. ACM PODS Conference, 2005.Google Scholar
  23. 23.
    Chang L., Moskowitz I.: An integrated framwork for database inference and privacy protection. Data and Applications Security. Kluwer, 2000.Google Scholar
  24. 24.
    Chang L., Moskowitz I.: Parsimonious downgrading and decision trees applied to the inference problem. New Security Paradigms Workshop, 1998.Google Scholar
  25. 25.
    Chaum D., Crepeau C., Damgard I.: Multiparty unconditionally secure protocols. ACM STOC Conference, 1988.Google Scholar
  26. 26.
    Chawla S., Dwork C., McSherry F., Smith A., Wee H.: Towards Privacy in Public Databases, TCC, 2005.Google Scholar
  27. 27.
    Chawla S., Dwork C., McSherry F., Talwar K.: On the Utility of Privacy-Preserving Histograms, UAI, 2005.Google Scholar
  28. 28.
    Chen K., Liu L.: Privacy-preserving data classification with rotation perturbation. ICDM Conference, 2005.Google Scholar
  29. 29.
    Chin F.: Security Problems on Inference Control for SUM, MAX, and MIN Queries. J. of the ACM, 33(3), 1986.Google Scholar
  30. 30.
    Chin F., Ozsoyoglu G.: Auditing for Secure Statistical Databases. Proceedings of the ACM’81 Conference, 1981.Google Scholar
  31. 31.
    Ciriani V., De Capitiani di Vimercati S., Foresti S., Samarati P.: k-Anonymity. Security in Decentralized Data Management, ed. Jajodia S., Yu T., Springer, 2006.Google Scholar
  32. 32.
    Clifton C., Kantarcioglou M., Lin X., Zhu M.: Tools for privacy-preserving distributed data mining. ACM SIGKDD Explorations, 4(2), 2002.Google Scholar
  33. 33.
    Clifton C., Marks D.: Security and Privacy Implications of Data Mining., Workshop on Data Mining and Knowledge Discovery, 1996.Google Scholar
  34. 34.
    Dasseni E., Verykios V., Elmagarmid A., Bertino E.: Hiding Association Rules using Confidence and Support, 4th Information Hiding Workshop, 2001.Google Scholar
  35. 35.
    Denning D.: Secure Statistical Databases with Random Sample Queries. ACM TODS Journal, 5(3), 1980.Google Scholar
  36. 36.
    Dinur I., Nissim K.: Revealing Information while preserving privacy. ACM PODS Conference, 2003.Google Scholar
  37. 37.
    Dobkin D., Jones A., Lipton R.: Secure Databases: Protection against User Influence. ACM Transactions on Databases Systems, 4(1), 1979.Google Scholar
  38. 38.
    Domingo-Ferrer J,, Mateo-Sanz J.: Practical data-oriented micro-aggregation for statistical disclosure control. IEEE TKDE, 14(1), 2002.Google Scholar
  39. 39.
    Du W., Atallah M.: Secure Multi-party Computation: A Review and Open Problems.CERIAS Tech. Report 2001-51, Purdue University, 2001.Google Scholar
  40. 40.
    Du W., Han Y. S., Chen S.: Privacy-Preserving Multivariate Statistical Analysis: Linear Regression and Classification, Proc. SIAM Conf. Data Mining, 2004.Google Scholar
  41. 41.
    Du W., Atallah M.: Privacy-Preserving Cooperative Statistical Analysis, 17th Annual Computer Security Applications Conference, 2001.Google Scholar
  42. 42.
    Dwork C., Nissim K.: Privacy-Preserving Data Mining on Vertically Partitioned Databases, CRYPTO, 2004.Google Scholar
  43. 43.
    Dwork C., Kenthapadi K., McSherry F., Mironov I., Naor M.: Our Data, Ourselves: Privacy via Distributed Noise Generation. EUROCRYPT, 2006.Google Scholar
  44. 44.
    Dwork C., McSherry F., Nissim K., Smith A.: Calibrating Noise to Sensitivity in Private Data Analysis, TCC, 2006.Google Scholar
  45. 45.
    Even S., Goldreich O., Lempel A.: A Randomized Protocol for Signing Contracts. Communications of the ACM, vol 28, 1985.Google Scholar
  46. 46.
    Evfimievski A., Gehrke J., Srikant R. Limiting Privacy Breaches in Privacy Preserving Data Mining. ACM PODS Conference, 2003.Google Scholar
  47. 47.
    Evfimievski A., Srikant R., Agrawal R., Gehrke J.: Privacy-Preserving Mining of Association Rules. ACM KDD Conference, 2002.Google Scholar
  48. 48.
    Evfimievski A.: Randomization in Privacy-Preserving Data Mining. ACM SIGKDD Explorations, 4, 2003.Google Scholar
  49. 49.
    Fienberg S., McIntyre J.: Data Swapping: Variations on a Theme by Dalenius and Reiss. Technical Report, National Institute of Statistical Sciences, 2003.Google Scholar
  50. 50.
    Fung B., Wang K., Yu P.: Top-Down Specialization for Information and Privacy Preservation. ICDE Conference, 2005.Google Scholar
  51. 51.
    Gambs S., Kegl B., Aimeur E.: Privacy-Preserving Boosting. Knowledge Discovery and Data Mining Journal, to appear.Google Scholar
  52. 52.
    Gedik B., Liu L.: A customizable k-anonymity model for protecting location privacy, ICDCS Conference, 2005.Google Scholar
  53. 53.
    Goldreich O.: Secure Multi-Party Computation, Unpublished Manuscript, 2002.Google Scholar
  54. 54.
    Huang Z., Du W., Chen B.: Deriving Private Information from Randomized Data. pp. 37–48, ACM SIGMOD Conference, 2005.Google Scholar
  55. 55.
    Hore B., Mehrotra S., Tsudik B.: A Privacy-Preserving Index for Range Queries. VLDB Conference, 2004.Google Scholar
  56. 56.
    Hughes D, Shmatikov V.: Information Hiding, Anonymity, and Privacy: A modular Approach. Journal of Computer Security, 12(1), 3–36, 2004.Google Scholar
  57. 57.
    Inan A., Saygin Y., Savas E., Hintoglu A., Levi A.: Privacy-Preserving Clustering on Horizontally Partitioned Data. Data Engineering Workshops, 2006.Google Scholar
  58. 58.
    Ioannidis I., Grama A., Atallah M.: A secure protocol for computing dot products in clustered and distributed environments, International Conference on Parallel Processing, 2002.Google Scholar
  59. 59.
    Iyengar V. S.: Transforming Data to Satisfy Privacy Constraints. KDD Conference, 2002.Google Scholar
  60. 60.
    Jiang W., Clifton C.: Privacy-preserving distributed k-Anonymity. Proceedings of the IFIP 11.3 Working Conference on Data and Applications Security, 2005.Google Scholar
  61. 61.
    Johnson W., Lindenstrauss J.: Extensions of Lipshitz Mapping into Hilbert Space, Contemporary Math. vol. 26, pp. 189-206, 1984.MATHMathSciNetGoogle Scholar
  62. 62.
    Jagannathan G., Wright R.: Privacy-Preserving Distributed k-means clustering over arbitrarily partitioned data. ACM KDD Conference, 2005.Google Scholar
  63. 63.
    Jagannathan G., Pillaipakkamnatt K., Wright R.: A New Privacy-Preserving Distributed k-Clustering Algorithm. SIAM Conference on Data Mining, 2006.Google Scholar
  64. 64.
    Kantarcioglu M., Clifton C.: Privacy-Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data. IEEE TKDE Journal, 16(9), 2004.Google Scholar
  65. 65.
    Kantarcioglu M., Vaidya J.: Privacy-Preserving Naive Bayes Classifier for Horizontally Partitioned Data. IEEE Workshop on Privacy-Preserving Data Mining, 2003.Google Scholar
  66. 66.
    Kargupta H., Datta S., Wang Q., Sivakumar K.: On the Privacy Preserving Properties of Random Data Perturbation Techniques. ICDM Conference, pp. 99-106, 2003.Google Scholar
  67. 67.
    Karn J., Ullman J.: A model of statistical databases and their security. ACM Transactions on Database Systems, 2(1):1–10, 1977.CrossRefGoogle Scholar
  68. 68.
    Kenthapadi K.,Mishra N., Nissim K.: Simulatable Auditing, ACM PODS Conference, 2005.Google Scholar
  69. 69.
    Kifer D., Gehrke J.: Injecting utility into anonymized datasets. SIGMOD Conference, pp. 217-228, 2006.Google Scholar
  70. 70.
    Kim J., Winkler W.: Multiplicative Noise for Masking Continuous Data, Technical Report Statistics 2003-01, Statistical Research Division, US Bureau of the Census, Washington D.C., Apr. 2003.Google Scholar
  71. 71.
    Kleinberg J., Papadimitriou C., Raghavan P.: Auditing Boolean Attributes. Journal of Computer and System Sciences, 6, 2003.Google Scholar
  72. 72.
    Koudas N., Srivastava D., Yu T., Zhang Q.: Aggregate Query Answering on Anonymized Tables. ICDE Conference, 2007.Google Scholar
  73. 73.
    Lakshmanan L., Ng R., Ramesh G. To Do or Not To Do: The Dilemma of Disclosing Anonymized Data. ACM SIGMOD Conference, 2005.Google Scholar
  74. 74.
    Liew C. K., Choi U. J., Liew C. J. A data distortion by probability distribution. ACM TODS, 10(3):395-411, 1985.MATHCrossRefGoogle Scholar
  75. 75.
    LeFevre K., DeWitt D., Ramakrishnan R.: Incognito: Full Domain K-Anonymity. ACM SIGMOD Conference, 2005.Google Scholar
  76. 76.
    LeFevre K., DeWitt D., Ramakrishnan R.: Mondrian Multidimensional K-Anonymity. ICDE Conference, 25, 2006.Google Scholar
  77. 77.
    LeFevre K., DeWitt D., Ramakrishnan R.: Workload Aware Anonymization. KDD Conference, 2006.Google Scholar
  78. 78.
    Li F., Sun J., Papadimitriou S. Mihaila G., Stanoi I.: Hiding in the Crowd: Privacy Preservation on Evolving Streams through Correlation Tracking. ICDE Conference, 2007.Google Scholar
  79. 79.
    Li N., Li T., Venkatasubramanian S: t-Closeness: Orivacy beyond k-anonymity and l-diversity. ICDE Conference, 2007.Google Scholar
  80. 80.
    Lindell Y., Pinkas B.: Privacy-Preserving Data Mining. CRYPTO, 2000.Google Scholar
  81. 81.
    Liu K., Kargupta H., Ryan J.: Random Projection Based Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining. IEEE Transactions on Knowledge and Data Engineering, 18(1), 2006.Google Scholar
  82. 82.
    Liu K., Giannella C. Kargupta H.: An Attacker’s View of Distance Preserving Maps for Privacy-Preserving Data Mining. PKDD Conference, 2006.Google Scholar
  83. 83.
    Machanavajjhala A., Gehrke J., Kifer D., and Venkitasubramaniam M.: l-Diversity: Privacy Beyond k-Anonymity. ICDE, 2006.Google Scholar
  84. 84.
    Malin B, Sweeney L. Re-identification of DNA through an automated linkage process. Journal of the American Medical Informatics Association, pp. 423–427, 2001.Google Scholar
  85. 85.
    Malin B. Why methods for genomic data privacy fail and what we can do to fix it, AAAS Annual Meeting, Seattle, WA, 2004.Google Scholar
  86. 86.
    Malin B., Sweeney L.: Determining the identifiability of DNA database entries. Journal of the American Medical Informatics Association, pp. 537–541, November 2000.Google Scholar
  87. 87.
    Malin, B. Protecting DNA Sequence Anonymity with Generalization Lattices. Methods of Information in Medicine, 44(5): 687-692, 2005.Google Scholar
  88. 88.
    Martin D., Kifer D., Machanavajjhala A., Gehrke J., Halpern J.: Worst-Case Background Knowledge. ICDE Conference, 2007.Google Scholar
  89. 89.
    Meyerson A., Williams R. On the complexity of optimal k-anonymity. ACM PODS Conference, 2004.Google Scholar
  90. 90.
    Mishra N., Sandler M.: Privacy vis Pseudorandom Sketches. ACM PODS Conference, 2006.Google Scholar
  91. 91.
    Mukherjee S., Chen Z., Gangopadhyay S.: A privacy-preserving technique for Euclidean distance-based mining algorithms using Fourier based transforms, VLDB Journal, 2006.Google Scholar
  92. 92.
    Moskowitz I., Chang L.: A decision theoretic system for information downgrading. Joint Conference on Information Sciences, 2000.Google Scholar
  93. 93.
    Nabar S., Marthi B., Kenthapadi K., Mishra N., Motwani R.: Towards Robustness in Query Auditing. VLDB Conference, 2006.Google Scholar
  94. 94.
    Naor M., Pinkas B.: Efficient Oblivious Transfer Protocols, SODA Conference, 2001.Google Scholar
  95. 95.
    Natwichai J., Li X., Orlowska M.: A Reconstruction-based Algorithm for Classification Rules Hiding. Australasian Database Conference, 2006.Google Scholar
  96. 96.
    Newton E., Sweeney L., Malin B.: Preserving Privacy by De-identifying Facial Images. IEEE Transactions on Knowledge and Data Engineering, IEEE TKDE, February 2005.Google Scholar
  97. 97.
    Oliveira S. R. M., Zaane O.: Privacy Preserving Clustering by Data Transformation, Proc. 18th Brazilian Symp. Databases, pp. 304-318, Oct. 2003.Google Scholar
  98. 98.
    Oliveira S. R. M., Zaiane O.: Data Perturbation by Rotation for Privacy-Preserving Clustering, Technical Report TR04-17, Department of Computing Science, University of Alberta, Edmonton, AB, Canada, August 2004.Google Scholar
  99. 99.
    Oliveira S. R. M., Zaiane O., Saygin Y.: Secure Association-Rule Sharing. PAKDD Conference, 2004.Google Scholar
  100. 100.
    Park H., Shim K. Approximate Algorithms for K-anonymity. ACM SIGMOD Conference, 2007.Google Scholar
  101. 101.
    Pei J., Xu J., Wang Z., Wang W., Wang K.: Maintaining k-Anonymity against Incremental Updates. Symposium on Scientific and Statistical Database Management, 2007.Google Scholar
  102. 102.
    Pinkas B.: Cryptographic Techniques for Privacy-Preserving Data Mining. ACM SIGKDD Explorations, 4(2), 2002.Google Scholar
  103. 103.
    Polat H., Du W.: SVD-based collaborative filtering with privacy. ACM SAC Symposium, 2005.Google Scholar
  104. 104.
    Polat H., Du W.: Privacy-Preserving Top-N Recommendations on Horizontally Partitioned Data. Web Intelligence, 2005.Google Scholar
  105. 105.
    Rabin M. O.: How to exchange secrets by oblivious transfer, Technical Report TR-81, Aiken Corporation Laboratory, 1981.Google Scholar
  106. 106.
    Reiss S.: Security in Databases: A combinatorial Study, Journal of ACM, 26(1), 1979.Google Scholar
  107. 107.
    Rizvi S., Haritsa J.: Maintaining Data Privacy in Association Rule Mining. VLDB Conference, 2002.Google Scholar
  108. 108.
    Saygin Y., Verykios V., Clifton C.: Using Unknowns to prevent discovery of Association Rules, ACM SIGMOD Record, 30(4), 2001.Google Scholar
  109. 109.
    Saygin Y., Verykios V., Elmagarmid A.: Privacy-Preserving Association Rule Mining, 12th International Workshop on Research Issues in Data Engineering, 2002.Google Scholar
  110. 110.
    Samarati P.: Protecting Respondents’ Identities in Microdata Release. IEEE Trans. Knowl. Data Eng. 13(6): 1010-1027 (2001).CrossRefGoogle Scholar
  111. 111.
    Shannon C. E.: The Mathematical Theory of Communication, University of Illinois Press, 1949.Google Scholar
  112. 112.
    Silverman B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.Google Scholar
  113. 113.
    Sweeney L.: Privacy Technologies for Homeland Security. Testimony before the Privacy and Integrity Advisory Committee of the Deprtment of Homeland Scurity, Boston, MA, June 15, 2005.Google Scholar
  114. 114.
    Sweeney L.: Privacy-Preserving Bio-terrorism Surveillance. AAAI Spring Symposium, AI Technologies for Homeland Security, 2005.Google Scholar
  115. 115.
    Sweeney L.: AI Technologies to Defeat Identity Theft Vulnerabilities. AAAI Spring Symposium, AI Technologies for Homeland Security, 2005.Google Scholar
  116. 116.
    Sweeney L., Gross R.: Mining Images in Publicly-Available Cameras for Homeland Security. AAAI Spring Symposium, AI Technologies for Homeland Security, 2005.Google Scholar
  117. 117.
    Sweeney L.: Guaranteeing Anonymity while Sharing Data, the Datafly System. Journal of the American Medical Informatics Association, 1997.Google Scholar
  118. 118.
    Sweeney L.: Replacing Personally Identifiable Information in Medical Records, the Scrub System. Journal of the American Medical Informatics Association, 1996.Google Scholar
  119. 119.
    Vaidya J., Clifton C.: Privacy-Preserving Association Rule Mining in Vertically Partitioned Databases. ACM KDD Conference, 2002.Google Scholar
  120. 120.
    Vaidya J., Clifton C.: Privacy-Preserving k-means clustering over vertically partitioned Data. ACM KDD Conference, 2003.Google Scholar
  121. 121.
    Vaidya J., Clifton C.: Privacy-Preserving Naive Bayes Classifier over vertically partitioned data. SIAM Conference, 2004.Google Scholar
  122. 122.
    Vaidya J., Clifton C.: Privacy-Preserving Decision Trees over vertically partitioned data. Lecture Notes in Computer Science, Vol 3654, 2005.Google Scholar
  123. 123.
    Verykios V. S., Bertino E., Fovino I. N., Provenza L. P., Saygin Y., Theodoridis Y.: State-of-the-art in privacy preserving data mining. ACM SIGMOD Record, v.33 n.1, 2004.Google Scholar
  124. 124.
    Verykios V. S., Elmagarmid A., Bertino E., Saygin Y.,, Dasseni E.: Association Rule Hiding. IEEE Transactions on Knowledge and Data Engineering, 16(4), 2004.Google Scholar
  125. 125.
    Wang K., Yu P., Chakraborty S.: Bottom-Up Generalization: A Data Mining Solution to Privacy Protection. ICDM Conference, 2004.Google Scholar
  126. 126.
    Wang K., Fung B. C. M., Yu P. Template based Privacy -Preservation in classification problems. ICDM Conference, 2005.Google Scholar
  127. 127.
    Wang K., Fung B. C. M.: Anonymization for Sequential Releases. ACM KDD Conference, 2006.Google Scholar
  128. 128.
    Wang K., Fung B. C. M., Dong G.: Integarting Private Databases for Data Analysis. Lecture Notes in Computer Science, 3495, 2005.Google Scholar
  129. 129.
    Warner S. L. Randomized Response: A survey technique for eliminating evasive answer bias. Journal of American Statistical Association, 60(309):63–69, March 1965.CrossRefGoogle Scholar
  130. 130.
    Winkler W.: Using simulated annealing for k-anonymity. Technical Report 7, US Census Bureau.Google Scholar
  131. 131.
    Wu Y.-H., Chiang C.-M., Chen A. L. P.: Hiding Sensitive Association Rules with Limited Side Effects. IEEE Transactions on Knowledge and Data Engineering, 19(1), 2007.Google Scholar
  132. 132.
    Xiao X., Tao Y.. Personalized Privacy Preservation. ACM SIGMOD Conference, 2006.Google Scholar
  133. 133.
    Xiao X., Tao Y. Anatomy: Simple and Effective Privacy Preservation. VLDB Conference, pp. 139-150, 2006.Google Scholar
  134. 134.
    Xiao X., Tao Y.: m-Invariance: Towards Privacy-preserving Re-publication of Dynamic Data Sets. SIGMOD Conference, 2007.Google Scholar
  135. 135.
    Xu J., Wang W., Pei J., Wang X., Shi B., Fu A. W. C.: Utility Based Anonymization using Local Recoding. ACM KDD Conference, 2006.Google Scholar
  136. 136.
    Xu S., Yung M.: k-anonymous secret handshakes with reusable credentials. ACM Conference on Computer and Communications Security, 2004.Google Scholar
  137. 137.
    Yao A. C.: How to Generate and Exchange Secrets. FOCS Conferemce, 1986.Google Scholar
  138. 138.
    Yao G., Feng D.: A new k-anonymous message transmission protocol. International Workshop on Information Security Applications, 2004.Google Scholar
  139. 139.
    Yang Z., Zhong S., Wright R.: Privacy-Preserving Classification of Customer Data without Loss of Accuracy. SDM Conference, 2006.Google Scholar
  140. 140.
    Yao C., Wang S., Jajodia S.: Checking for k-Anonymity Violation by views. ACM Conference on Computer and Communication Security, 2004.Google Scholar
  141. 141.
    Yu H., Jiang X., Vaidya J.: Privacy-Preserving SVM using nonlinear Kernels on Horizontally Partitioned Data. SAC Conference, 2006.Google Scholar
  142. 142.
    Yu H., Vaidya J., Jiang X.: Privacy-Preserving SVM Classification on Vertically Partitioned Data. PAKDD Conference, 2006.Google Scholar
  143. 143.
    Zhang P., Tong Y., Tang S., Yang D.: Privacy-Preserving Naive Bayes Classifier. Lecture Notes in Computer Science, Vol 3584, 2005.Google Scholar
  144. 144.
    Zhong S., Yang Z., Wright R.: Privacy-enhancing k-anonymization of customer data, In Proceedings of the ACM SIGMOD-SIGACT-SIGART Principles of Database Systems, Baltimore, MD. 2005.Google Scholar
  145. 145.
    Zhu Y., Liu L. Optimal Randomization for Privacy- Preserving Data Mining. ACM KDD Conference, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  • Philip S. Yu
    • 2
  1. 1.IBM Thomas J. Watson Research CenterHawthorneUSA
  2. 2.Department of Computer ScienceUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations