Skip to main content

Cytogenetic Mapping in Plants

  • Chapter
  • First Online:
Book cover Plant Cytogenetics

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 4))

Abstract

The first cytological maps in plants were based on natural features such as centromeres, the nucleolus organizing regions, and euchromatin-heterochromatin boundaries. Subsequently, researchers identified and used stains such as quinacrine and Giemsa to stain types of chromatin, such as AT-rich regions, differentially. Cytology was instrumental in mapping various chromosomal rearrangements. Electron microscopy has also proven to be a powerful tool, permitting three-­dimensional reconstruction of chromosomes from whole-nucleus preparations as well as providing a direct link between linkage and physical distance by localization of recombination nodules on synaptonemal-complex spreads. The application of in situ hybridization (ISH) greatly advanced plant cytogenetic mapping. The development of nonradioactive probe-labeling techniques, such as biotinylation and more recently fluorescence, has made ISH an accessible method for the localization of specific nucleic-acid sequences along the physical chromosomes of plants. A variety of DNA probes have been used in plant cytogenetic mapping, including genetic marker sequences, large DNA fragments, and repetitive sequences. Several tissues and techniques have been used to prepare target chromosomes for mapping, each affording different advantages and disadvantages with regard to resolution and availability. Recently, additional techniques have been developed that elongate chromosomes for even higher resolution. Cytogenetic mapping has proven useful for observing genome organization, and much research is currently focused on integration of plant cytological and linkage maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

AFLP:

Amplified fragment length polymorphism

BAC:

Bacterial artificial chromosome

EM:

Electron microscopy

FISH:

Fluorescence in situ hybridization

FL:

Fractional length

ISH:

In situ hybridization

QD:

Quantum dot

RFLP:

Restriction fragment length polymorphism

RN:

Recombination nodule

SC:

Synaptonemal complex

SSR:

Simple sequence-repeat

References

  • Adams SP, Hartman TP, Lim KY, Chase MW, Bennett MD, Leitch IJ, Leitch AR (2001) Loss and recovery of Arabidopsis-type telomere repeat sequences 5’-(TTTAGGG)(n)-3’ in the evolution of a major radiation of flowering plants. Proc R Soc London B Biol Sci 268:1541–1546.

    CAS  Google Scholar 

  • Adawy SS, Stupar RM, Jiang J (2004) Fluorescence in situ hybridization analysis reveals multiple loci of knob-associated DNA elements in one-knob and knobless maize lines. J Histochem Cytochem 52:1113–1116.

    CAS  PubMed  Google Scholar 

  • Albini S (1994) A karyotype of the Arabidopsis thaliana genome derived from synaptonemal complex analysis at prophase I of meiosis. Plant J 5:665–672.

    Google Scholar 

  • Albini SM, Jones GH (1988) Synaptonemal complex spreading in Allium cepa and Allium fistulosum. II. Pachytene observations: the SC karyotype and the correspondence of late recombination nodules and chiasmata. Genome 30:399–410.

    Google Scholar 

  • Amarillo FI, Bass HW (2007) A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics 177:1509–1526.

    PubMed  Google Scholar 

  • Ambros PF, Matzke MA, Matzke AJ (1986) Detection of a 17 kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma 94:11–18.

    CAS  Google Scholar 

  • Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078.

    CAS  PubMed  Google Scholar 

  • Ananiev EV, Wu C, Chamberlin MA, Svitashev S, Schwartz C, Gordon-Kamm W, Tingey S (2009) Artificial chromosome formation in maize (Zea mays L.). Chromosoma 118:157–177.

    CAS  PubMed  Google Scholar 

  • Anderson EG (1935) Chromosomal interchanges in maize. Genetics 20:70–83.

    CAS  PubMed  Google Scholar 

  • Anderson EG (1938) Translocations in maize involving chromosome 9. Genetics 23:307–313.

    CAS  PubMed  Google Scholar 

  • Anderson EG (1939) Translocations in maize involving chromosome 8. Genetics 24:385–390.

    CAS  PubMed  Google Scholar 

  • Anderson EG (1941) Translocations in maize involving chromosome 1. Genetics 26:452–459.

    CAS  PubMed  Google Scholar 

  • Anderson EG, Brink RA (1940) Translocations in maize involving chromosome 3. Genetics 25:299–309.

    CAS  PubMed  Google Scholar 

  • Anderson EG, Kramer HH (1954) Translocations in maize involving chromosome 10. Genetics 39:506–512.

    CAS  PubMed  Google Scholar 

  • Anderson EG, Randolph LF (1945) Location of the centromeres on the linkage maps of maize. Genetics 30:518–526.

    Google Scholar 

  • Anderson EG, Kramer HH, Longley AE (1955a) Translocations in maize involving chromosome 4. Genetics 40:500–510.

    CAS  PubMed  Google Scholar 

  • Anderson EG, Kramer HH, Longley AE (1955b) Translocations in maize involving chromosome 6. Genetics 40:531–538.

    CAS  PubMed  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865.

    CAS  PubMed  Google Scholar 

  • Anderson LK, Salameh N, Bass HW, Harper LC, Cande WZ, Weber G, Stack SM (2004) Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics 166:1923–1933.

    CAS  PubMed  Google Scholar 

  • Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86.

    CAS  PubMed  Google Scholar 

  • Barton DW (1950) Pachytene morphology of the tomato chromosome complement. Am J Bot 37:639–643.

    Google Scholar 

  • Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137:5–18.

    CAS  PubMed  Google Scholar 

  • Bass HW, Riera-Lizarazu O, Ananiev EV, Bordoli SJ, Rines HW, Phillips RL, Sedat JW, Agard DA, Cande WZ (2000) Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J Cell Sci 113: 1033–1042.

    CAS  PubMed  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, SanMiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732.

    PubMed Central  PubMed  Google Scholar 

  • Beckett JB (1978) B-A translocations in maize I. Use in locating genes by chromosome arms. J Hered 69:27–36.

    Google Scholar 

  • Beckett JB (1993) Locating recessive genes to chromosome arm with B-A translocations. In: Freeling M, Walbot V (eds), The Maize Handbook. Springer, New York, pp. 315–327, 336–341.

    Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birchler JA (1980) The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. Genetics 94:687–700.

    CAS  PubMed  Google Scholar 

  • Chang SB, Anderson LK, Sherman JD, Royer SM, Stack SM (2007) Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics 176:2131–2138.

    CAS  PubMed  Google Scholar 

  • Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Klein Lankhorst R, Jacobsen E, de Jong H (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16:919–933.

    CAS  PubMed  Google Scholar 

  • Chen CC, Chen CM, Hsu FC, Wang CJ, Yang JT, Kao YY (2000) The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theor Appl Genet 101:30–36.

    CAS  Google Scholar 

  • Cheng Z, Buell CR, Wing RA, Gu M, Jiang J (2001a) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141.

    CAS  PubMed  Google Scholar 

  • Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001b) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757.

    CAS  PubMed  Google Scholar 

  • Cheng Z, Buell CR, Wing RA, Jiang J (2002a) Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res 10:379–387.

    CAS  PubMed  Google Scholar 

  • Cheng ZK, Dong FG, Langdon T, Shu OY, Buell CR, Gu MH, Blattner FR, Jiang JM (2002b) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim YS, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Creighton HB, McClintock B (1931) A correlation of cytological and genetical crossing-over in Zea mays. Proc Natl Acad Sci USA 17:492–497.

    CAS  PubMed  Google Scholar 

  • Danilova TV, Birchler JA (2008) Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma 117:345–356.

    PubMed  Google Scholar 

  • de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants – techniques and applications. Trends Plant Sci 4:258–263.

    Google Scholar 

  • Desel C, Jung C, Cai D, Kleine M, Schmidt T (2001) High-resolution mapping of YACs and the single-copy gene Hs1 pro-1 on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Mol Biol 45(1):113–122.

    CAS  PubMed  Google Scholar 

  • Dolezel J, Kubalakova M, Bartos J, Macas J (2004) Flow cytogenetics and plant genome mapping. Chromosome Res 12:77–91.

    CAS  PubMed  Google Scholar 

  • Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C (2007) Chromosome-based genomics in the cereals. Chromosome Res 15:51–66.

    CAS  PubMed  Google Scholar 

  • Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007.

    CAS  Google Scholar 

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. J Hered 79:366–370.

    Google Scholar 

  • Endo TR (1990) Gametocidal chromosomes and their induction of chromosome mutations in wheat. Japan J Genet 65:135–152.

    Google Scholar 

  • Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Res 15:67–75.

    CAS  PubMed  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307.

    CAS  Google Scholar 

  • Endo TR, Mukai Y (1988) Chromosome mapping of a speltoid suppressin gene of Triticum aestivum L. based on partial deletions in the long arm of chromosome 5A. Japan J Genet 63:501–505.

    Google Scholar 

  • Endo TR, Yamamoto M, Mukai Y (1994) Structural changes of rye chromosome 1R induced by a gemetocidal chromosome. Japan J Genet 69:13–19.

    Google Scholar 

  • Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479.

    CAS  PubMed  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320.

    CAS  PubMed  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Briefings Funct Genomics 9:95–102.

    Google Scholar 

  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJ, Zabel P, de Jones JH (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430.

    CAS  PubMed  Google Scholar 

  • Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torres-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876.

    CAS  PubMed  Google Scholar 

  • Fuchs J, Schubert I (1995) Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization. Chromosome Res 3:94–100.

    CAS  PubMed  Google Scholar 

  • Fuchs J, Kloos DU, Ganal MW, Schubert I (1996) In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes. Chromosome Res 4:277–281.

    CAS  PubMed  Google Scholar 

  • Fukui K, Kakeda K, Hashimoto J, Matsuoka S (1987) In situ hybridization of 125I labelled rRNA to rice chromosomes. Rice Genet Newslett 4:114–116.

    Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383.

    CAS  PubMed  Google Scholar 

  • Gill BS, Kimber G (1974) The Giemsa C-banded karyotype of rye. Proc Natl Acad Sci USA 71:1247–1249.

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012.

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891.

    CAS  PubMed  Google Scholar 

  • Gillies CB (1972) Reconstruction of the Neurospora crassa pachytene karyotype from serial sections of synaptonemal complexes. Chromosoma 36:119–130.

    CAS  PubMed  Google Scholar 

  • Gillies CB (1973) Ultrastructural analysis of maize pachytene karyotypes by three dimensional reconstruction of the synaptonemal complexes. Chromosoma 43:145–176.

    Google Scholar 

  • Gillies CB (1981) Electron microscopy of spread maize pachytene synaptonemal complexes. Chromosoma 83:575–591.

    Google Scholar 

  • Gomez MI, Islam-Faridi MN, Woo SS, Czeschin D Jr, Zwick MS, Stelly DM, Price HJ, Schertz KF, Wing RA (1997) FISH of a maize sh2-selected sorghum BAC to chromosomes of Sorghum bicolor. Genome 40:475–478.

    CAS  PubMed  Google Scholar 

  • Gottschalk W (1951) Untersuchungen am Pachytän normaler und röntgenbestrahlter Pollenmutterzellen von Solanum lycopersicum. Chromosoma 4:298–341.

    CAS  PubMed  Google Scholar 

  • Griffor MC, Vodkin LO, Singh RJ, Hymowitz T (1991) Fluorescent in situ hybridization to soybean metaphase chromosomes. Plant Mol Biol 17:101–109.

    CAS  PubMed  Google Scholar 

  • Gu M.-H., Ma H-T, Liang GH (1984) Karyotype analysis of seven species in the genus Sorghum. J Hered 75:196–202.

    Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Int J Plant Genomics 2008:896451.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafson JP, Dillé JE (1992) Chromosome location of Oryza sativa recombination linkage groups. Proc Natl Acad Sci USA 89:8646–8650.

    CAS  PubMed  Google Scholar 

  • Gustafson JP, Butler E, McIntyre CL (1990) Physical mapping of a low-copy DNA sequence in rye (Secale cereale L.). Proc Natl Acad Sci USA 87:1899–1902.

    CAS  PubMed  Google Scholar 

  • Guzzo F, Campagnari E, Levi M (2000) A new FISH protocol with increased sensitivity for physical mapping with short probes in plants. J Exp Bot 51:965–970.

    CAS  PubMed  Google Scholar 

  • Hake S, Walbot V (1980) The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79:251–270.

    CAS  Google Scholar 

  • Hanson RE, Zwick MS, Choi SD, Islam-Faridi MN, McKnight TD, Wing RA, Price HJ, Stelly DM (1995) Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome 38:646–651.

    CAS  PubMed  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji YF, McKnight TD, Stelly DM, Price HJ (1996) Distribution of 5 S and 18 S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61.

    CAS  PubMed  Google Scholar 

  • Harper LC, Cande WZ (2000) Mapping a new frontier; development of integrated cytogenetic maps in plants. Funct Integr Genomics 1:89–98.

    CAS  PubMed  Google Scholar 

  • Haynes FL (1964) Pachytene chromosomes of Solanum canasense. J Hered 55:168–173.

    Google Scholar 

  • Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodiv 5:277–289.

    Google Scholar 

  • Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11:31–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497.

    PubMed  Google Scholar 

  • Holm PB (1977) Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (Thunb.). Carlsberg Res Commun 42:77–98.

    Google Scholar 

  • Howell EC, Barker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong SJ (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234.

    CAS  PubMed  Google Scholar 

  • Huang XQ, Zeller FJ, Hsam SLK, Wenzel G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298–305.

    CAS  PubMed  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255.

    CAS  PubMed  Google Scholar 

  • Iovene M, Wielgus SM, Wimon PW, Buell CR, Jiang J (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317.

    CAS  PubMed  Google Scholar 

  • Islam-Faridi MN, Iscii T, Kumar L, Sitch A, Brar DS (1990) Chromosomal location of ribosomal RNA genes in rice by in situ hybridization. Rice Genet Newslett 7:144.

    Google Scholar 

  • Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353.

    CAS  PubMed  Google Scholar 

  • Islam-Faridi MN, Nelson CD, Kubisiak TL (2007) Reference karyotype and cytomolecular map for loblolly pine (Pinus taeda L.). Genome 50:241–251.

    CAS  PubMed  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572.

    CAS  PubMed  Google Scholar 

  • Jackson SA, Cheng ZK, Wang ML, Goodman HM, Jiang JM (2000) Comparative fluorescence in situ hybridization mapping of a 431-kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics 156:833–838.

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725.

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068.

    CAS  PubMed  Google Scholar 

  • Jiang J, Gill BS, Wang GL, Ronald PC, Ward DC (1995) Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci USA 92:4487–4491.

    CAS  PubMed  Google Scholar 

  • Jiang J, Hulbert SH, Gill BS, Ward DC (1996) Interphase fluorescence in situ hybridization mapping: a physical mapping strategy for plant species with large complex genomes. Mol Gen Genet 252:497–502.

    CAS  PubMed  Google Scholar 

  • Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang JM (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581.

    CAS  PubMed Central  PubMed  Google Scholar 

  • John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at cytological level. Nature 223:582–587.

    CAS  PubMed  Google Scholar 

  • Kaczmarek A, Naganowska B, Wolko B (2009) Karyotyping of the narrow-leafed lupin (Lupinus angustifolius L.) by using FISH, PRINS and computer measurements of chromosomes. J Appl Genet 50:77–82.

    CAS  PubMed  Google Scholar 

  • Kao FI, Cheng YY, Chow TY, Chen HH, Liu SM, Cheng CH, Chung MC (2006) An integrated map of Oryza sativa L. chromosome 5. Theor Appl Genet 112:891–902.

    CAS  PubMed  Google Scholar 

  • Kasha KJ, Burnham CR (1965) The location of interchange breakpoints in barley. 1. Linkage studies and map orientation. Can J Genet Cytol 7:62–77.

    Google Scholar 

  • Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559.

    CAS  PubMed  Google Scholar 

  • Kato A, Albert PS, Vega JM, Birchler JA (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78.

    PubMed  Google Scholar 

  • Khrustaleva LI, Kik C (2001) Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 25:699–707.

    CAS  PubMed  Google Scholar 

  • Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23:452–484.

    Google Scholar 

  • Khush GS, Rick CM, Robinson RW (1964) Genetic activity in a heterochromatic chromosome segment of the tomato. Science 145:1432–1434.

    CAS  PubMed  Google Scholar 

  • Kim JS, Childs KL, Islam-Faridi MN, Menz MA, Klein RR, Klein PE, Price HJ, Mullet JE, Stelly DM (2002) Integrated karyotyping of sorghum by in situ hybridization of landed BACs. Genome 45:402–412.

    CAS  PubMed  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005a) Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics 169:955–965.

    CAS  PubMed  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005b) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173.

    CAS  PubMed  Google Scholar 

  • Kim JS, Islam-Faridi MN, Klein PE, Stelly DM, Price HJ, Klein RR, Mullet JE (2005c) Comprehensive molecular cytogenetic analysis of sorghum genome architecture: distribution of euchromatin, heterochromatin, genes and recombination in comparison to rice. Genetics 171:1963–1976.

    CAS  PubMed  Google Scholar 

  • Koo DH, Jiang J (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J 59:509–516.

    CAS  PubMed  Google Scholar 

  • Koo DH, Jo SH, Bang JW, Park HM, Lee S, Choi D (2008) Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2. Genetics 179:1211–1220.

    CAS  PubMed  Google Scholar 

  • Koornneef M, Fransz P, de Jone H (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res 11:183–194.

    CAS  PubMed  Google Scholar 

  • Koumbaris GL, Bass HW (2003) A new single-locus cytogenetic mapping system for maize (Zea mays L.): overcoming FISH detection limits with marker-selected sorghum (S. propinquum L.) BAC clones. Plant J 35:647–659.

    CAS  PubMed  Google Scholar 

  • Kubalakova M, Valarik M, Bartos J, Vrana J, Cihalikova J, Molnar-Lang M, Dolezel J (2003) Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46:893–905.

    CAS  PubMed  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58.

    CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532.

    CAS  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412.

    PubMed  Google Scholar 

  • Kurata N, Omura T (1978) Karyotype analysis in rice I. A new method for identifying all chromosome pairs. Japan J Genet 54:251–255.

    Google Scholar 

  • Labonte DR, Juvik JA (1991) Sugary-enhancer (SE) gene located on the long arm of chromosome 4 in maize (Zea mays L.). J Hered 82:176–178.

    CAS  Google Scholar 

  • Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173:1007–1021.

    CAS  PubMed  Google Scholar 

  • Lamb JC, Danilova T, Bauer MJ, Meyer JM, Holland JJ, Jensen MD, Birchler JA (2007a) Single-gene detection and karyotyping using small-target fluorescence in situ hybridization on maize somatic chromosomes. Genetics 175:1047–1058.

    CAS  PubMed  Google Scholar 

  • Lamb JC, Meyer JM, Corcoran B, Kato A, Han F, Birchler JA (2007b) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosome Res 15:33–49.

    CAS  PubMed  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79:4381–4385.

    CAS  PubMed  Google Scholar 

  • Lapitan NL, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based on in situ hybridization of the TGRI satellite repeat. Genome 32:922–998.

    Google Scholar 

  • Lapitan N, Brown S, Kennard W, Stephens JL, Knudson DL (1997) FISH physical mapping with barley BAC clones. Plant J 11:149–156.

    CAS  Google Scholar 

  • Lavania UC (1978) Differential staining and plant chromosomes – progress in cytogenetics. Curr Sci 47:255–260.

    Google Scholar 

  • Lawrence CJ, Seigfried TE, Bass HW, Anderson LK (2006) Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock Translator. Genetics 172:2007–2009.

    CAS  PubMed  Google Scholar 

  • Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B (2004) Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108:1193–1199.

    CAS  PubMed  Google Scholar 

  • Lima-de-Faria A (1952) Chromomere analysis of the chromosome complement of rye. Chromosoma 5:1–68.

    CAS  PubMed  Google Scholar 

  • Loegrin WQ, Sears ER (1966) Relationships among stem-rust genes on wheat chromosomes 2B, 4B and 6B. Crop Sci 6:157–160.

    Google Scholar 

  • Lysak MA, Fransz PF, Ali HBM, Schubert I (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697.

    CAS  PubMed  Google Scholar 

  • Lysak MA, Pecinka A, Schubert I (2003) Recent progress in chromosome painting of Arabidopsis and related species. Chromosome Res 11:195–204.

    CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525.

    CAS  PubMed  Google Scholar 

  • Ma Q, Wang C, Su X (2008a) Synthesis and application of quantum dot-tagged fluorescent microbeads. J Nanosci Nanotechnol 8:1138–1149.

    CAS  PubMed  Google Scholar 

  • Ma L, Wu SM, Huang J, Ding Y, Pang DW, Li L (2008b) Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 117:181–187.

    CAS  PubMed  Google Scholar 

  • Magoon ML, Shambulingappa KG (1961) Karyomorphology of Sorghum propinquum and its bearing on the origin of 40-chromosome Sorghum. Chromosoma 12:460–465.

    CAS  PubMed  Google Scholar 

  • Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629.

    CAS  PubMed  Google Scholar 

  • McClintock B (1930) A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proc Natl Acad Sci USA 16:791–796.

    CAS  PubMed  Google Scholar 

  • McClintock B (1931) The order of the genes C, Sh and Wx in Zea mays with reference to a cytologically known point in the chromosome. Proc Natl Acad Sci USA 17:485–491.

    CAS  PubMed  Google Scholar 

  • McMillin DE, Roupakias DG, Scandalios JG (1979) Chromosomal location of two mitochondrial malate dehydrogenase structural genes in Zea mays using trisomics and B-A translocations. Genetics 92:1241–1250.

    CAS  PubMed  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676.

    CAS  PubMed  Google Scholar 

  • Miller JT, Jackson SA, Nasuda S, Gill BS, Wing RA, Jiang J (1998) Cloning and characterization of a centromere-specific repetitive DNA element from Sorghum bicolor. Theor Appl Genet 96:832–839.

    CAS  Google Scholar 

  • Misra RN, Shastry SVS (1967) Pachytene analysis in Oryza. VIII. Chromosome morphology and karyotypic variation in O. sativa. Indian J Genet Plant Breeding 27:349–368.

    Google Scholar 

  • Mok DWS, Mok MC (1976) A modified Giemsa technique for identifying bean chromosomes. J Hered 67:187–188.

    Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200.

    CAS  PubMed  Google Scholar 

  • Muller F, Houben A, Barker PE, Xiao Y, Kas JA, Melzer M (2006) Quantum dots – a versatile tool in plant science? J Nanobiotechnol 4:5.

    Google Scholar 

  • Muller HJ (1927) The effects of X-radiation on genes and chromosomes. Science 66:84–87.

    CAS  PubMed  Google Scholar 

  • Nagaki K, Song JQ, Stupar RM, Parokonny AS, Yuan QP, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang JM (2003a) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770.

    CAS  PubMed  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang JM (2003b) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225.

    CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145.

    CAS  PubMed  Google Scholar 

  • Nandi HK (1936) The chromosome morphology, secondary association and origin of cultivated rice. J Genet 33:315–336.

    Google Scholar 

  • Ohmido N, Akiyama Y, Fukui K (1998) Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant Mol Biol 38:1043–1052.

    CAS  PubMed  Google Scholar 

  • Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to DNA of cytological preparations. Proc Natl Acad Sci USA 64:600–604.

    CAS  PubMed  Google Scholar 

  • Pardue ML, Gall JG (1975) Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol 10:1–16.

    CAS  PubMed  Google Scholar 

  • Parthasarathy N (1938) Cytogenetical studies in Oryzeae and Phalarideae I. Cytogenetics of some X-ray derivatives in rice (Oryza sativa L.). J Genet 37:1–40.

    Google Scholar 

  • Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ (1981) Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494.

    CAS  PubMed  Google Scholar 

  • Pedersen C, Giese H, Linde-Laursen I (1995) Towards an integration of the physical and the genetic chromosome maps of barley by in situ hybridization. Hereditas 123:77–88.

    CAS  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672.

    CAS  PubMed  Google Scholar 

  • Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res 17:405–417.

    CAS  PubMed  Google Scholar 

  • Peters JL, Constandt H, Neyt P, Cnops G, Zethof J, Zabeau M, Gerats T (2001) A physical amplified fragment-length polymorphism map of Arabidopsis. Plant Physiol 127:1579–1589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson DG, Lapitan NL, Stack SM (1999) Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152:427–439.

    CAS  PubMed  Google Scholar 

  • Pijnacker LP, Ferwerda MA (1984) Giemsa C-banding of potato chromosomes. Can J Genet Cytol 26:415–419.

    Google Scholar 

  • Raap AK, Vandecorput MPC, Vervenne RAW, Vangijlswijk RPM, Tanke HJ, Wiegant J (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin-tyramide or fluorochrome-tyramide. Human Mol Genet 4:529–534.

    CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramanna MS, Prakken P (1967) Structure of and homology between pachytene and somatic ­metaphase chromosomes of tomato. Genetica 38:115–133.

    Google Scholar 

  • Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81.

    Google Scholar 

  • Reamon-Buttner SM, Schmidt T, Jung C (1999) AFLPs represent highly repetitive sequences in Asparagus officinalis L. Chromosome Res 7:297–304.

    CAS  PubMed  Google Scholar 

  • Rens W, Moderegger K, Skelton H, Clarke O, Trifonov V, Ferguson-Smith MA (2006) A procedure for image enhancement in chromosome painting. Chromosome Res 14:497–503.

    CAS  PubMed  Google Scholar 

  • Rhoades MM (1950) Meiosis in maize. J Hered 41:58–67.

    Google Scholar 

  • Rick CM, Khush GS (1964) Chromosome engineering in Lycopersicon. In: Riley R, Lewis KR (eds), Chromosome Manipulations and Plant Genetics. Oliver & Boyd, Edinburg, pp. 8–20.

    Google Scholar 

  • Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156:327–339.

    CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998) The physical mapping of microsatellite markers in wheat. Genome 41:278–283.

    Google Scholar 

  • Roupakias DG, McMillin DE, Scandalios JG (1980) Chromosomal location of the catalase structural genes in Zea mays, using B-A translocations. Theor Appl Genet 58:211–218.

    CAS  PubMed  Google Scholar 

  • Sadder MT, Weber G (2001) Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol Biol Rep 19:117–123.

    CAS  Google Scholar 

  • Sadder T, Weber G (2002) Comparison between genetic and physical maps in Zea mays L. of molecular markers linked to resistance against Diatraea spp. Theor Appl Genet 104:908–915.

    CAS  PubMed  Google Scholar 

  • Sadder MT, Ponelies N, Born U, Weber G (2000) Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization. Genome 43:1081–1083.

    CAS  PubMed  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768.

    CAS  PubMed  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316.

    CAS  PubMed  Google Scholar 

  • Schmidt R, West J, Love K, Lenehan Z, Lister C, Thompson H, Bouchez D, Dean C (1995) Physical map and organization of Arabidopsis thaliana chromosome 4. Science 270:480–483.

    CAS  PubMed  Google Scholar 

  • Schnabel E, Kulikova O, Penmetsa RV, Bisseling T, Cook DR, Frugoli J (2003) An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome 46:665–672.

    CAS  PubMed  Google Scholar 

  • Schweizer D (1973) Differential staining of plant chromosomes. Chromosoma 40:307–320.

    Google Scholar 

  • Shastry SV, Misra RN (1961) Pachytene analysis in Oryza. 2. Sterility in japonica-indica rice hybrids. Chromosoma 12:248–271.

    Google Scholar 

  • Shen DL, Wang ZF, Wu M (1987) Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma 95:311–314.

    Google Scholar 

  • Sherman, JD, Stack SM (1992) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. 5. Tomato (Lycopersicon esculentum) karyotype and idiogram. Genome 35:354–359.

    Google Scholar 

  • Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708.

    CAS  PubMed  Google Scholar 

  • Sherman JD, Herickhoff LA, Stack SM (1992) Silver staining two types of meiotic nodules. Genome 35:907–915.

    CAS  PubMed  Google Scholar 

  • Shibata F, Murata M (2004) Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117:2963–2970.

    CAS  PubMed  Google Scholar 

  • Singh RJ, Tsuchiya T (1975) Pachytene chromosomes of barley. J Hered 66:165–167.

    Google Scholar 

  • Song YC, Gustafson JP (1995) The physical location of 14 RFLP markers in rice (Oryza sativa L). Theor Appl Genet 90:113–119.

    CAS  PubMed  Google Scholar 

  • Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK (2009) Role of fluorescence in situ hybridization in sequencing the tomato genome. Cytogenet Genome Res 124:339–350.

    CAS  PubMed  Google Scholar 

  • Stephens JL, Brown SE, Lapitan NL, Knudson DL (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47:179–189.

    CAS  PubMed  Google Scholar 

  • Suzuki HY, Futsuhara F, Takaiwa F, Kurata N (1991) Localization of glutelin gene in rice chromosome by in situ hybridization. Japan J Genet 66:305–312.

    Google Scholar 

  • Szinay D, Chang SB, Khrustaleva L, Peters S, Schijlen E, Bai Y, Stiekema WJ, van Ham RC, de Jong H, Klein Lankhorst RM (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56:627–637.

    CAS  PubMed  Google Scholar 

  • Tang X, Szinay D, Lang C, Ramanna MS, van der Vossen EA, Datema E, Klein Lankhorst R, deBoer J, Peters SA, Bachem C, Stiekema W, Visser RG, de Jone H, Bai Y (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328.

    CAS  PubMed  Google Scholar 

  • Tang X, de Boer JM, van Eck HJ, Bachem C, Visser RG, deJong H (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 17:899–915.

    CAS  PubMed Central  PubMed  Google Scholar 

  • ten Hoopen R, Robbins T, Fransz PF, Montijn BM, Oud O, Gerats AGM, Nanninga N (1996) Localization of T-DNA insertions in petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell 8:823–830.

    PubMed Central  PubMed  Google Scholar 

  • ten Hoopen R, Montijn BM, Veuskens JT, Oud OJ, Nanninga N (1999) The spatial localization of T-DNA insertions in petunia interphase nuclei: consequences for chromosome organization and transgene insertion sites. Chromosome Res 7:611–623.

    PubMed  Google Scholar 

  • Tikhonov AP, SanMiguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414.

    CAS  PubMed  Google Scholar 

  • Tsuchida M, Fukushima T, Nasuda S, Masoudi-Nejad A, Ishikawa G, Nakamura T, Endo TR (2008) Dissection of rye chromosome 1R in common wheat. Genes Genet Syst 83:43–53.

    CAS  PubMed  Google Scholar 

  • Valarik M, Bartos J, Kovarova P, Kubalakova M, de Jong JH, Dolezel J (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37:940–950.

    CAS  PubMed  Google Scholar 

  • Van Laere K, Van Huylenbroeck J, Van Bockstaele E (2008) Karyotype analysis and physical mapping of 45 S rRNA genes in Hydrangea species by fluorescence in situ hybridization. Plant Breeding 127:301–307.

    Google Scholar 

  • Visser RGF, Bachem CWB, de Boer JM, Bryan GJ, Chakrabati SK, Feingold S, Gromadka R, van Ham RCHJ, Huang S, Jacobs JME, Kuznetsov B, de Melo PE, Milbourne D, Orjeda G, Sagredo B, Tang XM (2009) Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am J Potato Res 86:417–429.

    CAS  Google Scholar 

  • Vlacilova K, Ohri D, Vrana J, Cihalikova J, Kubalakova M, Kahl G, Dolezel J (2002) Development of flow cytogenetics and physical genome mapping in chickpea (Cicer arietinum L.). Chromosome Res 10:695–706.

    CAS  PubMed  Google Scholar 

  • Vosa CG, Marchi P (1972) Quinacrine fluorescence and Giemsa staining in plants. Nat New Biol 237:191–192.

    CAS  PubMed  Google Scholar 

  • Wang CJ, Harper L, Cande WZ (2006) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Zhang X, Jin W (2009) An overview of plant centromeres. J Genet Genomics 36:529–537.

    CAS  PubMed  Google Scholar 

  • Wang, K, Guan B, Guo W, Zhou B, Hu Y, Zhu Y, Zhang T (2008) Completely distinguishing individual A-genome chromosomes and their karyotyping analysis by multiple bacterial artificial chromosome – fluorescence in situ hybridization. Genetics 178:1117–1122.

    CAS  PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) The structure of DNA. Cold Spring Harb Symp Quant Biol 18:123–131.

    CAS  PubMed  Google Scholar 

  • Weber D, Helentjaris T (1989) Mapping RFLP loci in maize using B-A translocations. Genetics 121:583–590.

    CAS  PubMed  Google Scholar 

  • Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc Natl Acad Sci USA 69:629–632.

    CAS  PubMed  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311.

    CAS  PubMed  Google Scholar 

  • Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1980) Crystal structure analysis of a complete turn of B-DNA. Nature 287:755–758.

    CAS  PubMed  Google Scholar 

  • Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo D-H, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743.

    PubMed Central  PubMed  Google Scholar 

  • Wu HK, Chung MC, Xie Y, Wu R (1986) Chromosomal localization of rice rbcS genes. Rice Genet Newslett 3:58.

    Google Scholar 

  • Wu SM, Zhao X, Zhang ZL, Xie HY, Tian ZQ, Peng J, Lu ZX, Pang DW, Xie ZX (2006) Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. Chemphyschem 7:1062–1067.

    CAS  PubMed  Google Scholar 

  • Xu J, Earle ED (1996a) Direct FISH of 5 S rDNA on tomato pachytene chromosomes places the gene at the heterochromatic knob immediately adjacent to the centromere of chromosome 1. Genome 39:216–221.

    CAS  PubMed  Google Scholar 

  • Xu J, Earle ED (1996b) High resolution physical mapping of 45 S (5.8 S, 18 S and 25 S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma 104:545–550.

    CAS  PubMed  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang GL, Green PJ, Wing RA, Buell CR, Meyers GC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh BP, Peloquin SJ (1965) Pachytene chromosomes of the potato (Solanum tuberosum, group Andigena). Am J Bot 52:1014–1020.

    Google Scholar 

  • Yu H, Liang GH, Kofoid KD (1991) Analysis of C-banding chromosome patterns of Sorghum. Crop Sci 31:1524–1527.

    Google Scholar 

  • Zhang DF, Yang QY, Bao WD, Zhang Y, Han B, Xue YB, Cheng ZK (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335.

    CAS  PubMed  Google Scholar 

  • Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004a) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299.

    CAS  PubMed  Google Scholar 

  • Zhang P, Li W, Friebe B, Gill BS (2004b) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987.

    CAS  PubMed  Google Scholar 

  • Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34.

    PubMed Central  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong X-B, Fransz PF, Wennekes-van Eden J, Zabel P, van Kammen A, de Jong JH (1996a) ­High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence ­in-situ hybridisation. Plant Mol Biol Rep 14:232–242.

    CAS  Google Scholar 

  • Zhong X-B, de Jong JH, Zabel P (1996b) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28.

    CAS  PubMed  Google Scholar 

  • Zhong XB, Bodeau J, Fransz PF, Williamson VM, van Kammen A, de Jong JH, Zabel P (1999) FISH to meiotic pachytene chromosomes of tomato locates the root knot nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6 S and 6 L, respectively. Theor Appl Genet 98:365–370.

    CAS  Google Scholar 

  • Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32:619–697.

    CAS  PubMed  Google Scholar 

  • Zoller JF, Herrmann RG, Wanner G (2004) Chromosome condensation in mitosis and meiosis of rye (Secale cereale L.). Cytogenet Genome Res 105:134–144.

    CAS  PubMed  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Dzeschin DG Jr, Wing RA, Hart GE, Stelly DM, Price HJ (1998) Physical mapping of the liguleless linkage group in Sorghum bicolor using rice RFLP-selected sorghum BACs. Genetics 148:1983–1992.

    CAS  PubMed  Google Scholar 

  • Zwick MS, Islam-Faridi MN, Zhang HB, Hodnett GL, Gomez MI, Kim JS, Price HJ, Stelly DM (2000) Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot 87:1757–1764.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hank W. Bass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Figueroa, D.M., Amarillo, I.E., Bass, H.W. (2012). Cytogenetic Mapping in Plants. In: Bass, H., Birchler, J. (eds) Plant Cytogenetics. Plant Genetics and Genomics: Crops and Models, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70869-0_4

Download citation

Publish with us

Policies and ethics