Skip to main content

Diabetic Retinopathy, Inflammation, and Proteasome

  • Chapter
  • 846 Accesses

Diabetic retinopathy is a leading cause of vision loss and blindness in adults in developed countries. Growing evidence indicates that a low grade and chronic inflammatory process may have a key role in the pathogenesis of diabetic retinopathy, even at the early stages of the disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14. References

  • Abiko, T., Abiko, A., Clermont, A.C., Shoelson, B., Horio, N., Takahashi, J., Adamis, A.P., King, G.L. and Bursell, S.E., 2003, Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 52: 829.

    CAS  PubMed  Google Scholar 

  • Abu El-Asrar, A.M., Desmet, S., Meersschaert, A., Dralands, L., Missotten, L. and Geboes, K., 2001, Expression of the inducible isoform of nitric oxide synthase in the retinas of human subjects with diabetes mellitus. Am. J. Ophthalmol. 132: 551.

    CAS  PubMed  Google Scholar 

  • Abu El-Asrar, A.M., Meersschaert, A., Dralands, L., Missotten, L. and Geboes, K., 2004, Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye 18: 306.

    CAS  PubMed  Google Scholar 

  • Adamis, A.P., 2002, Is diabetic retinopathy an inflammatory disease? Br. J. Ophthalmol. 86: 363.

    CAS  PubMed  Google Scholar 

  • Adams, J., 2002, Development of the proteasome inhibitor PS-341. Oncologist 7: 9.

    CAS  PubMed  Google Scholar 

  • Adams, J. and Kauffman, M., 2004, Development of the proteasome inhibitor Velcade (Bortezomib), Cancer Invest. 22: 304.

    CAS  PubMed  Google Scholar 

  • Adams, J., Behnke, M., Chen, S., Cruickshank, A.A., Dick, L.R., Grenier, L., Klunder, J.M., Ma, Y.T., Plamondon, L. and Stein, R. L., 1998, Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 8: 333.

    CAS  PubMed  Google Scholar 

  • Aiello, L.P., Avery, R.L., Arrigg, P.G., Keyt, B.A., Jampel, H.D., Shah, S.T., Pasquale, L.R., Thieme, H., Iwamoto, M.A., Park, J.E., et al., 1994, Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331: 1480.

    CAS  PubMed  Google Scholar 

  • Aiello, L.P., Bursell, S.E., Clermont, A., Duh, E., Ishii, H., Takagi, C., Mori, F., Ciulla, T.A., Ways, K., Jirousek, M., Smith, L.E. and King, G.L., 1997, Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective β-isoform-selective inhibitor. Diabetes 46: 1473.

    CAS  PubMed  Google Scholar 

  • Antonetti, D.A., Barber, A.J., Khin, S., Lieth, E., Tarbell, J.M. and Gardner, T.W., 1998, Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 47: 1953.

    CAS  PubMed  Google Scholar 

  • Antonetti, D.A., Barber, A.J., Hollinger, L.A., Wolpert, E.B. and Gardner, T.W., 1999, Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden. 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274: 23463.

    CAS  PubMed  Google Scholar 

  • Antonetti, D.A., Wolpert, E.B., DeMaio, L., Harhaj, N.S. and Scaduto, R.C., Jr., 2002, Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 80: 667.

    CAS  PubMed  Google Scholar 

  • Ayalasomayajula, S.P. and Kompella, U.B., 2003, Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur. J. Pharmacol. 458: 283.

    CAS  PubMed  Google Scholar 

  • Bachmair, A., Finley, D. and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179.

    CAS  PubMed  Google Scholar 

  • Bai, N., Tang, S., Ma, J., Luo, Y. and Lin, S., 2003, Increased expression of intercellular adhesion molecule-1, vascular cellular adhesion molecule-1 and leukocyte common antigen in diabetic rat retina. Yan Ke Xue Bao. 19: 176.

    CAS  PubMed  Google Scholar 

  • Baldwin, A.S., Jr., 1996, The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649.

    CAS  PubMed  Google Scholar 

  • Bamforth, S.D., Lightman, S.L. and Greenwood, J., 1997, Interleukin-1 β-induced disruption of the retinal vascular barrier of the central nervous system is mediated through leukocyte recruitment and histamine. Am. J. Pathol. 150: 329.

    CAS  PubMed  Google Scholar 

  • Barber, A.J., 2003, A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog. Neuropsychopharmacol. Biol. Psychiatry. 27: 283.

    CAS  PubMed  Google Scholar 

  • Barber, A.J. and Antonetti, D.A., 2003, Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest. Ophthalmol. Vis. Sci. 44: 5410.

    PubMed  Google Scholar 

  • Barber, A.J., Antonetti, D.A. and Gardner, T.W., 2000, Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest. Ophthalmol. Vis. Sci. 41: 3561.

    CAS  PubMed  Google Scholar 

  • Barber, A.J., Antonetti, D.A., Kern, T.S., Reiter, C.E., Soans, R.S., Krady, J.K., Levison, S.W., Gardner, T.W. and Bronson, S.K., 2005, The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest. Ophthalmol. Vis. Sci. 46: 2210.

    PubMed  Google Scholar 

  • Barouch, F.C., Miyamoto, K., Allport, J.R., Fujita, K., Bursell, S.E., Aiello, L.P., Luscinskas, F.W. and Adamis, A. P., 2000, Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest. Ophthalmol. Vis. Sci. 41: 1153.

    CAS  PubMed  Google Scholar 

  • Ben-Mahmud, B.M., Mann, G.E., Datti, A., Orlacchio, A., Kohner, E.M. and Chibber, R., 2004, Tumor necrosis factor-alpha in diabetic plasma increases the activity of core 2 GlcNAc-T and adherence of human leukocytes to retinal endothelial cells: significance of core 2 GlcNAc-T in diabetic retinopathy. Diabetes 53: 2968.

    CAS  PubMed  Google Scholar 

  • Becerra, S.P., 1997, Structure-function studies on PEDF. A noninhibitory serpin with neurotrophic activity. Adv. Exp. Med. Biol. 425: 223.

    CAS  PubMed  Google Scholar 

  • Bogyo, M. and Wang, E.W., 2002, Proteasome inhibitors: complex tools for a complex enzyme. Curr. Top Microbiol. Immunol. 268: 185.

    CAS  PubMed  Google Scholar 

  • Boyd, S.D., Tsai, K.Y. and Jacks, T., 2000, An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat. Cell Biol. 2: 563.

    CAS  PubMed  Google Scholar 

  • Brownlee, M., 2005, The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615.

    CAS  PubMed  Google Scholar 

  • Bullard, S.R., Hatchell, D.L., Cohen, H.J. and Rao, K.M., 1994, Increased adhesion of neutrophils to retinal vascular endothelial cells exposed to hyperosmolarity. Exp. Eye Res. 58: 641.

    CAS  PubMed  Google Scholar 

  • Caldwell, R.B., Bartoli, M., Behzadian, M.A., El-Remessy, A.E., Al-Shabrawey, M., Platt, D.H. and Caldwell, R.W., 2003, Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab. Res. Rev. 19: 442.

    CAS  PubMed  Google Scholar 

  • Carmo, A., Ramos, P., Reis, A., Proença, R. and Cunha-Vaz, J.G., 1998, Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp. Eye Res. 67: 569.

    Google Scholar 

  • Carmo, A., Cunha-Vaz, J.G., Carvalho, A.P. and Lopes, M.C., 1999, L-arginine transport in retinas from streptozotocin diabetic rats: correlation with the level of IL-1β and NO synthase activity. Vision Res. 39: 3817.

    CAS  PubMed  Google Scholar 

  • Carmo, A., Cunha-Vaz, J.G., Carvalho, A.P. and Lopes, M.C., 2000, Effect of cyclosporin-A on the blood-retinal barrier permeability in streptozotocin-induced diabetes. Mediators Inflamm. 9: 243.

    CAS  PubMed  Google Scholar 

  • Carroll, W.J., Hollis, T.M. and Gardner, T.W., 1988, Retinal histamine synthesis is increased in experimental diabetes. Invest. Ophthalmol. Vis. Sci. 29: 1201.

    CAS  PubMed  Google Scholar 

  • Carroll, J.E., Hess, D.C., Howard, E.F. and Hill, W.D., 2000, Is nuclear factor-kappaB a good treatment target in brain ischemia/reperfusion injury? Neuroreport 11: R1.

    CAS  PubMed  Google Scholar 

  • Carter, R.S., Pennington, K.N., Arrate, P., Oltz, E.M. and Ballard, D.W., 2005, Site-specific monoubiquitination of IkappaB kinase IKKβ regulates its phosphorylation and persistent activation. J. Biol. Chem. 280: 43272.

    CAS  PubMed  Google Scholar 

  • Chader, G.J., 2001, PEDF: raising both hopes and questions in controlling angiogenesis. Proc. Natl. Acad. Sci. USA 98: 2122.

    CAS  PubMed  Google Scholar 

  • Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Gonda, D.K. and Varshavsky, A., 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576.

    CAS  PubMed  Google Scholar 

  • Chen, W., Jump, D.B., Grant, M.B., Esselman, W.J. and Busik, J.V. 2003, Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 44: 5016.

    PubMed  Google Scholar 

  • Chibber, R., Ben-Mahmud, B.M., Mann, G.E., Zhang, J.J. and Kohner, E.M., 2003, Protein kinase C β2-dependent phosphorylation of core 2 GlcNAc-T promotes leukocyte-endothelial cell adhesion: a mechanism underlying capillary occlusion in diabetic retinopathy. Diabetes 52: 1519.

    CAS  PubMed  Google Scholar 

  • Ciechanover, A., 2006, The ubiquitin proteolytic system: from a vague idea, through basic mechanisms and onto human diseases and drug targeting. Neurology. 66: S7.

    PubMed  Google Scholar 

  • Cunha-Vaz, J.G., 1976, The blood-retinal barriers. Doc. Ophthalmol. 41: 287.

    CAS  PubMed  Google Scholar 

  • Cunha-Vaz, J.G., 2000, Diabetic retinopathy: surrogate outcomes for drug development for diabetic retinopathy. Ophthalmologica 214: 377.

    CAS  PubMed  Google Scholar 

  • Cunha-Vaz, J.G., 2001, Initial alterations in nonproliferative diabetic retinopathy. Ophthalmologica 215: 7.

    PubMed  Google Scholar 

  • Cunha-Vaz, J., Faria de Abreu, J.R. and Campos, A.J., 1975, Early breakdown of the blood-retinal barrier in diabetes. Br. J. Ophthalmol. 59: 649.

    CAS  PubMed  Google Scholar 

  • Curtis, T.M. and Scholfield, C.N., 2004, The role of lipids and protein kinase Cs in the pathogenesis of diabetic retinopathy. Diabetes Metab. Res. Rev. 20: 28.

    CAS  PubMed  Google Scholar 

  • Dawson, D.W., Volpert, O.V., Gillis, P., Crawford, S.E., Xu, H., Benedict, W. and Bouck, N.P., 1999, Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285: 245.

    CAS  PubMed  Google Scholar 

  • Deshaies, R.J., 1999, SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15: 435.

    CAS  PubMed  Google Scholar 

  • Deshaies, R.J. and Ferrell, J.E., Jr., 2001, Multisite phosphorylation and the countdown to S phase. Cell 107: 819.

    CAS  PubMed  Google Scholar 

  • Du, Y., Smith, M.A., Miller, C.M. and Kern, T.S., 2002, Diabetes-induced nitrative stress in the retina, and correction by aminoguanidine. J. Neurochem. 80: 771.

    CAS  PubMed  Google Scholar 

  • Edelman, J.L., Lutz, D. and Castro, M.R., 2005, Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp. Eye Res. 80: 249.

    CAS  PubMed  Google Scholar 

  • Elliott, P.J. and Ross, J.S., 2001, The proteasome: a new target for novel drug therapies. Am. J. Clin. Pathol. 116: 637.

    CAS  PubMed  Google Scholar 

  • Elliott, P.J., Zollner, T.M. and Boehncke, W.H., 2003, Proteasome inhibition: a new anti-inflammatory strategy. J. Mol. Med. 81: 235.

    CAS  PubMed  Google Scholar 

  • El-Remessy, A.B, Behzadian, M.A., Abou-Mohamed, G., Franklin, T., Caldwell, R.W. and Caldwell, R.B., 2003, Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor. Am. J. Pathol. 162: 1995.

    CAS  PubMed  Google Scholar 

  • Enea, N.A., Hollis, T.M., Kern, J.A. and Gardner, T.W., 1989, Histamine H1 receptors mediate increased blood-retinal barrier permeability in experimental diabetes. Arch. Ophthalmol. 107: 270.

    CAS  PubMed  Google Scholar 

  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al., 2001, C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43.

    CAS  PubMed  Google Scholar 

  • Feldman, R.M., Correll, C.C., Kaplan, K.B. and Deshaies, R.J., 1997, A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221.

    CAS  PubMed  Google Scholar 

  • Ferrara, N. and Gerber, H.P., 2001, The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 106: 148.

    CAS  PubMed  Google Scholar 

  • Frank, R.N., 2004, Diabetic retinopathy. N. Engl. J. Med. 350: 48.

    CAS  PubMed  Google Scholar 

  • Franks, W.A., Limb, G.A., Stanford, M.R., Ogilvie, J., Wolstencroft, R.A., Chignell, A.H. and Dumonde, D.C., 1992, Cytokines in human intraocular inflammation. Curr. Eye Res. 11: 187.

    PubMed  Google Scholar 

  • Gao, G., Li, Y., Zhang, D., Gee, S., Crosson, C. and Ma, J., 2001, Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. 489: 270.

    CAS  PubMed  Google Scholar 

  • Gardner, T.W., 1995, Histamine, ZO-1 and increased blood-retinal barrier permeability in diabetic retinopathy. Trans. Am. Ophthalmol. Soc. 93: 583.

    CAS  PubMed  Google Scholar 

  • Gardner, T.W., Eller, A.W., Friberg, T.R., D’Antonio, J.A. and Hollis, T.M., 1995, Antihistamines reduce blood-retinal barrier permeability in type I (insulin-dependent) diabetic patients with nonproliferative retinopathy. A pilot study. Retina 15: 134.

    PubMed  Google Scholar 

  • Gardner, T.W., Antonetti, D.A., Barber, A.J., LaNoue, K.F. and Levison, S.W., 2002, Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47: 253.

    Google Scholar 

  • Gerhardinger, C., Costa, M.B., Coulombe, M.C., Toth, I., Hoehn, T. and Grosu, P., 2005, Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest. Ophthalmol. Vis. Sci. 46: 349.

    PubMed  Google Scholar 

  • Geyer, R.K., Yu, Z.K. and Maki, C.G., 2000, The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat .Cell Biol. 2: 569.

    CAS  PubMed  Google Scholar 

  • Glickman, M.H. and Ciechanover, A., 2002, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82: 373.

    CAS  PubMed  Google Scholar 

  • Glickman, M.H., Rubin, D.M., Fu, H., Larsen, C.N., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Vierstra, R., Baumeister, W., et al., 1999, Functional analysis of the proteasome regulatory particle. Mol. Biol. Rep. 26: 21.

    CAS  PubMed  Google Scholar 

  • Glotzer, M., Murray, A.W. and Kirschner, M.W., 1991, Cyclin is degraded by the ubiquitin pathway. Nature 349: 132.

    CAS  PubMed  Google Scholar 

  • Goldberg, A.L. and Rock, K., 2002, Not just research tools-proteasome inhibitors offer therapeutic promise. Nat. Med. 8: 338.

    CAS  PubMed  Google Scholar 

  • Gorbea, C., Taillandier, D. and Rechsteiner, M.. 1999, Assembly of the regulatory complex of the 26S proteasome. Mol. Biol. Rep. 26: 15.

    CAS  PubMed  Google Scholar 

  • Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D. and Huber, R., 1997, Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386: 463.

    CAS  PubMed  Google Scholar 

  • Hammes, H.P., Lin, J., Bretzel, R.G., Brownlee, M. and Breier, G., 1998, Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 47: 401.

    CAS  PubMed  Google Scholar 

  • Harhaj, N.S., Barber, A.J. and Antonetti, D.A., 2002, Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J. Cell Physiol. 193: 349.

    CAS  PubMed  Google Scholar 

  • Hayden, M.S. and Ghosh, S., 2004, Signaling to NF-kappaB. Genes Dev. 18: 2195.

    CAS  PubMed  Google Scholar 

  • Heissmeyer, V., Krappmann, D., Hatada, E.N. and Scheidereit, C., 2001, Shared pathways of IkappaB kinase-induced SCF(βTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha. Mol. Cell Biol. 21: 1024.

    CAS  PubMed  Google Scholar 

  • Hershko, A., 1997, Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9: 788.

    CAS  PubMed  Google Scholar 

  • Hollis, T.M., Sill, H.W., Butler, C., Campos, M.J. and Gardner, T.W., 1992, Astemizole reduces blood-retinal barrier leakage in experimental diabetes. J. Diabetes Complications 6: 230.

    CAS  PubMed  Google Scholar 

  • Hughes, J.M., Brink, A., Witmer, A.N., Hanraads-de Riemer, M., Klaassen, I. and Schlingemann, R.O., 2004, Vascular leucocyte adhesion molecules unaltered in the human retina in diabetes. Br. J. Ophthalmol. 88: 566.

    CAS  PubMed  Google Scholar 

  • Huibregtse, J.M., Scheffner, M., Beaudenon, S. and Howley, P.M., 1995, A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92: 2563.

    CAS  PubMed  Google Scholar 

  • Ishida, S., Usui, T., Yamashiro, K., Kaji, Y., Amano, S., Ogura, Y., Hida, T., Oguchi, Y., Ambati, J., Miller, J.W., et al., 2003, VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J. Exp. Med. 198: 483.

    CAS  PubMed  Google Scholar 

  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G., Jr., 2001, HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464.

    CAS  PubMed  Google Scholar 

  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al., 2001, Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468.

    CAS  PubMed  Google Scholar 

  • Joussen, A.M., Huang, S., Poulaki, V., Camphausen, K., Beecken, W.D., Kirchhof, B. and Adamis, A.P., 2001a, In vivo retinal gene expression in early diabetes. Invest. Ophthalmol. Vis. Sci. 42: 3047.

    CAS  PubMed  Google Scholar 

  • Joussen, A.M, Murata, T., Tsujikawa, A., Kirchhof, B., Bursell, S.E. and Adamis, A.P., 2001b, Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. Pathol. 158: 147.

    CAS  PubMed  Google Scholar 

  • Joussen, A.M., Poulaki, V., Mitsiades, N., Kirchhof, B., Koizumi, K., Dohmen, S. and Adamis, A.P., 2002a, Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 16: 438.

    CAS  PubMed  Google Scholar 

  • Joussen, A.M., Poulaki, V., Qin, W., Kirchhof, B., Mitsiades, N., Wiegand, S.J., Rudge, J., Yancopoulos, G.D. and Adamis, A.P., 2002b, Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am. J. Pathol. 160: 501.

    CAS  PubMed  Google Scholar 

  • Joussen, A.M., Poulaki, V., Mitsiades, N., Cai, W.Y., Suzuma, I., Pak, J., Ju, S.T., Rook, S.L., Esser, P., Mitsiades, C.S., Kirchhof, B., Adamis, A.P. and Aiello, L.P., 2003, Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J. 17: 76.

    CAS  PubMed  Google Scholar 

  • Joussen, A.M., Poulaki, V., Le, M.L., Koizumi, K., Esser, C., Janicki, H., Schraermeyer, U., Kociok, N., Fauser, S., Kirchhof, B., Kern, T.S. and Adamis, A.P., 2004, A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 18: 1450.

    CAS  PubMed  Google Scholar 

  • Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R.C. and Conaway, J.W., 2000, Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA 97: 10430.

    CAS  PubMed  Google Scholar 

  • Karin, M. and Ben-Neriah, Y., 2000, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu. Rev. Immunol. 18: 621.

    CAS  PubMed  Google Scholar 

  • Kishino, T., Lalande, M. and Wagstaff, J., 1997, UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet. 15: 70.

    CAS  PubMed  Google Scholar 

  • Koepp, D.M., Harper, J.W. and Elledge, S.J., 1999, How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell 97: 431.

    CAS  PubMed  Google Scholar 

  • Kornitzer, D. and Ciechanover, A., 2000, Modes of regulation of ubiquitin-mediated protein degradation. J. Cell Physiol. 182: 1.

    CAS  PubMed  Google Scholar 

  • Kowluru, R.A., 2001, Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. Acta Diabetol. 38: 179.

    CAS  PubMed  Google Scholar 

  • Kowluru, R.A. and Odenbach, S., 2004a, Role of interleukin-1β in the development of retinopathy in rats: effect of antioxidants. Invest. Ophthalmol. Vis. Sci. 45: 4161.

    PubMed  Google Scholar 

  • Kowluru, R.A. and Odenbach, S., 2004b, Role of interleukin-1β in the pathogenesis of diabetic retinopathy. Br. J. Ophthalmol. 88: 1343.

    CAS  PubMed  Google Scholar 

  • Kowluru, R.A., Engerman, R.L., Case, G.L. and Kern, T.S., 2001, Retinal glutamate in diabetes and effect of antioxidants. Neurochem. Int. 38: 385.

    CAS  PubMed  Google Scholar 

  • Kowluru, R.A., Koppolu, P., Chakrabarti, S. and Chen, S., 2003, Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic. Res. 37: 1169.

    CAS  PubMed  Google Scholar 

  • Krady, J.K., Basu, A., Allen, C.M., Xu, Y., LaNoue, K.F., Gardner, T.W. and Levison, S.W., 2005, Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54: 1559.

    CAS  PubMed  Google Scholar 

  • Kwon, Y.T., Reiss, Y., Fried, V.A., Hershko, A., Yoon, J.K., Gonda, D.K., Sangan, P., Copeland, N.G., Jenkins, N.A. and Varshavsky, A., 1998, The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95: 7898.

    CAS  PubMed  Google Scholar 

  • Leal, E.C., Manivannan, A., Aveleira, C., Serra, A., Castilho, A., Terasaki, T., Hosoya, K.-I., Cotter, M., Ambrosio, A. and Forrester, J.V., 2005a, Leukocyte adhesion and blood-retinal barrier (BRB) breakdown in diabetic retinopathy (DR): role of nitric oxide (NO). IOVS ARVO E-Abstract 423.

    Google Scholar 

  • Leal, E.C., Manivannan, A., Cotter, M., Ambrosio, A.F. and Forrester, J.V., 2005b, Inducible nitric oxide synthase is involved in increased leukocyte adhesion to retinal vessels induced by diabetes. Ophthalmic Res. 37.S1.05: 62.

    Google Scholar 

  • Leal, E.C., Santiago, A.R. and Ambrosio, A.F., 2005c, Old and new drug targets in diabetic retinopathy: from biochemical changes to inflammation and neurodegeneration. Curr. Drug Targets CNS Neurol. Disord. 4: 421.

    CAS  PubMed  Google Scholar 

  • Limb, G.A., Chignell, A.H., Green, W., LeRoy, F. and Dumonde, D.C., 1996, Distribution of TNF-alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br. J. Ophthalmol. 80: 168.

    CAS  PubMed  Google Scholar 

  • Limb, G.A., Soomro, H., Janikoun, S., Hollifield, R.D. and Shilling, J., 1999a, Evidence for control of tumor necrosis factor-alpha (TNF-alpha) activity by TNF receptors in patients with proliferative diabetic retinopathy. Clin. Exp. Immunol. 115: 409.

    CAS  PubMed  Google Scholar 

  • Limb, G.A., Webster, L., Soomro, H., Janikoun, S. and Shilling, J., 1999b, Platelet expression of tumor necrosis factor-alpha (TNF-alpha), TNF receptors and intercellular adhesion molecule-1 (ICAM-1) in patients with proliferative diabetic retinopathy. Clin. Exp. Immunol. 118: 213.

    CAS  PubMed  Google Scholar 

  • Lorenzi, M. and Gerhardinger, C., 2001, Early cellular and molecular changes induced by diabetes in the retina. Diabetologia. 44: 791.

    CAS  PubMed  Google Scholar 

  • Lorick, K.L., Jensen, J.P., Fang, S., Ong, A.M., Hatakeyama, S. and Weissman, A.M., 1999, RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96: 11364.

    CAS  PubMed  Google Scholar 

  • Lorick, K.L., Tsai, Y.-C., Yang, Y. and Weissman, A., 2005, In: Protein Degradation, vol. 1, R. J. Mayer, A. Ciechanover and M. Rechsteiner, (Eds.). Wiley-VHC, Weinheim pp. 44-101.

    Google Scholar 

  • Lu, M., Perez, V.L., Ma, N., Miyamoto, K., Peng, H.B., Liao, J.K. and Adamis, A.P., 1999, VEGF increases retinal vascular ICAM-1 expression in vivo. Invest. Ophthalmol. Vis. Sci. 40: 1808.

    CAS  PubMed  Google Scholar 

  • Luna, J.D., Chan, C.C., Derevjanik, N.L., Mahlow, J., Chiu, C., Peng, B., Tobe, T., Campochiaro, P.A. and Vinores, S.A., 1997, Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1β-mediated breakdown. J. Neurosci. Res. 49: 268.

    CAS  PubMed  Google Scholar 

  • Mamputu, J.C. and Renier, G., 2004, Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: inhibitory effect of antioxidants. J. Leukoc. Biol. 75: 1062.

    CAS  PubMed  Google Scholar 

  • Maniatis, T., 1999, A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev. 13: 505.

    CAS  PubMed  Google Scholar 

  • Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J., 2001, Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20: 5197.

    CAS  PubMed  Google Scholar 

  • Mathews, M.K., Merges, C., McLeod, D.S. and Lutty, G.A., 1997, Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38: 2729.

    CAS  PubMed  Google Scholar 

  • Matsuda, S., Gomi, F., Oshima, Y., Tohyama, M. and Tano, Y., 2005, Vascular endothelial growth factor reduced and connective tissue growth factor induced by triamcinolone in ARPE19 cells under oxidative stress. Invest. Ophthalmol. Vis. Sci. 46: 1062.

    PubMed  Google Scholar 

  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R. and Ratcliffe, P.J., 1999, The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 399: 271.

    CAS  PubMed  Google Scholar 

  • Meylan, E. and Tschopp, J., 2005, The RIP kinases: crucial integrators of cellular stress. Trends Biochem. Sci. 30: 151.

    CAS  PubMed  Google Scholar 

  • McLeod, D.S., Lefer, D.J., Merges, C. and Lutty, G.A., 1995, Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroids. Am. J. Pathol. 147: 642.

    CAS  PubMed  Google Scholar 

  • Miyamoto, K., Hiroshiba, N., Tsujikawa, A. and Ogura, Y., 1998, In vivo demonstration of increased leukocyte entrapment in retinal microcirculation of diabetic rats. Invest. Ophthalmol. Vis. Sci. 39: 2190.

    CAS  PubMed  Google Scholar 

  • Miyamoto, K., Khosrof, S., Bursell, S.-E., Rohan, R., Murata, T., Clermont, A., Aiello, L.P., Ogura, Y. and Adamis, A.P., 1999, Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl. Acad. Sci. USA 96: 10836.

    CAS  PubMed  Google Scholar 

  • Mohr, S., 2004, Potential new strategies to prevent the development of diabetic retinopathy. Expert. Opin. Investig. Drugs. 13: 189.

    CAS  PubMed  Google Scholar 

  • Mohr, S., Xi, X., Tang, J. and Kern, T.S., 2002, Caspase activation in retinas of diabetic and galactosemic mice and diabetic patients. Diabetes. 51: 1172.

    CAS  PubMed  Google Scholar 

  • Moore, T.C, Moore, J.E., Kaji, Y., Frizzell, N., Usui, T., Poulaki, V., Campbell, I.L., Stitt, A.W., Gardiner, T.A., Archer, D.B. and Adamis, A.P., 2003, The role of advanced glycation end-products in retinal microvascular leukostasis. Invest. Ophthalmol. Vis. Sci. 44: 4457.

    PubMed  Google Scholar 

  • Nauck, M., Roth, M., Tamm, M., Eickelberg, O., Wieland, H., Stulz, P. and Perruchoud, A.P., 1997, Induction of vascular endothelial growth factor by platelet-activating factor and platelet-derived growth factor is downregulated by corticosteroids. Am. J. Respir. Cell Mol. Biol. 16: 398.

    CAS  PubMed  Google Scholar 

  • Nauck, M., Karakiulakis, G., Perruchoud, A.P., Papakonstantinou, E. and Roth, M., 1998, Corticosteroids inhibit the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur. J. Pharmacol. 341: 309.

    CAS  PubMed  Google Scholar 

  • Nonaka, A., Kiryu, J., Tsujikawa, A., Yamashiro, K., Miyamoto, K., Nishiwaki, H., Honda, Y. and Ogura, Y., 2000, PKC-β inhibitor (LY333531) attenuates leukocyte entrapment in retinal microcirculation of diabetic rats. Invest. Ophthalmol. Vis. Sci. 41: 2702.

    CAS  PubMed  Google Scholar 

  • Orian, A., Gonen, H., Bercovich, B., Fajerman, I., Eytan, E., Israel, A., Mercurio, F., Iwai, K., Schwartz, A.L. and Ciechanover, A., 2000, SCF(β)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. EMBO J. 19: 2580.

    CAS  PubMed  Google Scholar 

  • Ozkaynak, E., Finley, D. and Varshavsky, A., 1984, The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312: 663.

    CAS  PubMed  Google Scholar 

  • Page, A.M. and Hieter, P., 1999, The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem. 68: 583.

    CAS  PubMed  Google Scholar 

  • Palombella, V.J., Rando, O.J., Goldberg, A.L. and Maniatis, T., 1994, The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78: 773.

    CAS  PubMed  Google Scholar 

  • Park, J.W., Park, S.J., Park, S.H., Kim, K.Y., Chung, J.W., Chun, M.H. and Oh, S.J., 2005, Upregulated expression of neuronal nitric oxide synthase in experimental diabetic retina. Neurobiol. Dis. (Epub ahead of print).

    Google Scholar 

  • Phillips, J.B., Williams, A.J., Adams, J., Elliott, P.J. and Tortella, F.C., 2000, Proteasome inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat model of focal cerebral ischemia. Stroke 31: 1686.

    CAS  PubMed  Google Scholar 

  • Pickart, C.M., 2001, Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70: 503.

    CAS  PubMed  Google Scholar 

  • Pickart, C.M., 2004, Back to the future with ubiquitin, Cell 116: 181.

    CAS  PubMed  Google Scholar 

  • Pickart, C.M. and VanDemark, A.P., 2000, Opening doors into the proteasome. Nat. Struct. Biol. 7: 999.

    CAS  PubMed  Google Scholar 

  • Qaum, T., Xu, Q., Joussen, A.M., Clemens, M.W., Qin, W., Miyamoto, K., Hassessian, H., Wiegand, S.J., Rudge, J., Yancopoulos, G.D. and Adamis, A.P., 2001, VEGF-initiated blood-retinal barrier breakdown in early diabetes. Invest. Ophthalmol. Vis. Sci. 42: 2408.

    CAS  PubMed  Google Scholar 

  • Rasmussen, H., Chu, K.W., Campochiaro, P., Gehlbach, P.L., Haller, J.A., Handa, J.T., Nguyen, Q.D. and Sung, J.U., 2001, Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum. Gene Ther. 12: 2029.

    CAS  PubMed  Google Scholar 

  • Reiss, Y. and Hershko, A., 1990, Affinity purification of ubiquitin-protein ligase on immobilized protein substrates. Evidence for the existence of separate NH2-terminal binding sites on a single enzyme. J. Biol. Chem. 265: 3685.

    CAS  PubMed  Google Scholar 

  • Reiss, Y., Kaim, D. and Hershko, A., 1988, Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263: 2693.

    CAS  PubMed  Google Scholar 

  • Robinson, G.S., Pierce, E.A., Rook, S.L., Foley, E., Webb, R. and Smith, L.E., 1996, Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc. Natl. Acad. Sci. USA 93: 4851.

    CAS  PubMed  Google Scholar 

  • Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D. and Goldberg, A.L., 1994, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761.

    CAS  PubMed  Google Scholar 

  • Romeo, G., Liu, W.H., Asnaghi, V., Kern, T.S. and Lorenzi, M., 2002, Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51: 2241.

    CAS  PubMed  Google Scholar 

  • Rungger-Brandle, E., Dosso, A.A. and Leuenberger, P.M., 2000, Glial reactivity, an early feature of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 41: 1971.

    CAS  PubMed  Google Scholar 

  • Saishin, Y., Saishin, Y., Takahashi, K., Lima e Silva, R., Hylton, D., Rudge, J.S., Wiegand, S.J. and Campochiaro, P.A., 2003a, VEGF-TRAP(R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J. Cell Physiol. 195: 241.

    CAS  PubMed  Google Scholar 

  • Saishin, Y., Saishin, Y., Takahashi, K., Melia, M., Vinores, S.A. and Campochiaro, P.A., 2003b, Inhibition of protein kinase C decreases prostaglandin-induced breakdown of the blood-retinal barrier. J. Cell Physiol. 195: 210.

    CAS  PubMed  Google Scholar 

  • Scheffner, M., Huibregtse, J.M., Vierstra, R.D. and Howley, P.M., 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495.

    CAS  PubMed  Google Scholar 

  • Scheffner, M., Nuber, U. and Huibregtse, J.M., 1995, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373: 81.

    CAS  PubMed  Google Scholar 

  • Schmidt, A.M. and Stern, D.M., 2000, RAGE: a new target for the prevention and treatment of the vascular and inflammatory complications of diabetes. Trends Endocrinol. Metab. 11: 368.

    CAS  PubMed  Google Scholar 

  • Schmitz, M.L., Bacher, S. and Kracht, M., 2001, I kappa B-independent control of NF-kappa B activity by modulatory phosphorylations. Trends Biochem. Sci. 26: 186.

    CAS  PubMed  Google Scholar 

  • Schroder, S., Palinski, W. and Schmid-Schonbein, G.W., 1991, Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am. J. Pathol. 139: 81.

    CAS  PubMed  Google Scholar 

  • Shima, D.T., Adamis, A.P., Ferrara, N., Yeo, K.T., Yeo, T.K., Allende, R., Folkman, J. and D’Amore, P.A., 1995, Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol. Med. 1: 182.

    CAS  PubMed  Google Scholar 

  • Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., et al., 2000, Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25: 302.

    CAS  PubMed  Google Scholar 

  • Skowyra, D., Craig, K.L., Tyers, M., Elledge, S.J. and Harper, J.W., 1997, F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209.

    CAS  PubMed  Google Scholar 

  • Spranger, J., Meyer-Schwickerath, R., Klein, M., Schatz, H. and Pfeiffer, A., 1995, TNF-alpha level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med. Klin. (Munich) 90: 134.

    CAS  Google Scholar 

  • Stellmach, V., Crawford, S.E., Zhou, W. and Bouck, N., 2001, Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor, Proc. Natl. Acad. Sci. USA 98: 2593.

    CAS  PubMed  Google Scholar 

  • Stitt, A.W., 2003, The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp. Mol. Pathol. 75: 95.

    CAS  PubMed  Google Scholar 

  • Stone, J., Itin, A., Alon, T., Pe’er, J., Gnessin, H., Chan-Ling, T. and Keshet, E., 1995, Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15: 4738.

    CAS  PubMed  Google Scholar 

  • Stone, J., Chan-Ling, T., Pe’er, J., Itin A., Gnessin, H. and Keshet, E., 1996, Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopahty of prematurity. Invest. Ophtalmol. Vis. Sci. 37: 290.

    CAS  Google Scholar 

  • Sugawara, R., Hikichi, T., Kitaya, N., Mori, F., Nagaoka, T., Yoshida, A. and Szabo, C., 2004, Peroxynitrite decomposition catalyst, FP15, and poly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. Curr. Eye Res. 29: 11.

    CAS  PubMed  Google Scholar 

  • Sun, L. and Chen, Z.J., 2004, The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16: 119.

    CAS  PubMed  Google Scholar 

  • Sutter, C.H., Laughner, E. and Semenza, G.L., 2000, Hypoxia-inducible factor 1-alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. USA 97: 4748.

    CAS  PubMed  Google Scholar 

  • Suzuma, K., Takahara, N., Suzuma, I., Isshiki, K., Ueki, K., Leitges, M., Aiello, L.P. and King, G.L., 2002, Characterization of protein kinase C β isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc. Natl. Acad. Sci. USA 99: 721.

    CAS  PubMed  Google Scholar 

  • Takeda, M., Mori, F., Yoshida, A., Takamiya, A., Nakagomi, S., Sato, E. and Kiyama, H., 2001, Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats. Diabetologia. 44: 1043.

    CAS  PubMed  Google Scholar 

  • Tamura, H., Miyamoto, K., Kiryu, J., Miyahara, S., Katsuta, H., Hirose, F., Musashi, K. and Yoshimura, N., 2005, Intravitreal injection of corticosteroid attenuates leukostasis and vascular leakage in experimental diabetic retina. Invest. Ophthalmol. Vis. Sci. 46: 1440.

    PubMed  Google Scholar 

  • Tolentino, M.J., Miller, J.W., Gragoudas, E.S., Jakobiec, F.A., Flynn, E., Chatzistefanou, K., Ferrara, N. and Adamis, A.P., 1996, Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 103: 1820.

    CAS  PubMed  Google Scholar 

  • Tolentino, M.J., McLeod, D.S., Taomoto, M., Otsuji, T., Adamis, A.P. and Lutty, G.A., 2002, Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am. J. Ophthalmol. 133: 373.

    CAS  PubMed  Google Scholar 

  • Varshavsky, A., 1997, The N-end rule pathway of protein degradation. Genes Cells 2: 13.

    CAS  PubMed  Google Scholar 

  • Varshavsky, A., Turner, G., Du, F. and Xie, Y., 2000, Felix Hoppe-Seyler Lecture 2000. The ubiquitin system and the N-end rule pathway. Biol. Chem. 381: 779.

    CAS  PubMed  Google Scholar 

  • Vinitsky, A., Michaud, C., Powers, J.C. and Orlowski, M., 1992, Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 31: 9421.

    CAS  PubMed  Google Scholar 

  • Vinores, S.A., Van Niel, E., Swerdloff, J.L. and Campochiaro, P.A., 1993, Electron microscopic immuno-cytochemical demonstration of blood-retinal barrier breakdown in human diabetics and its association with aldose reductase in retinal vascular endothelium and retinal pigment epithelium. Histochem. J. 25: 648.

    CAS  PubMed  Google Scholar 

  • Welchman, R.L., Gordon, C. and Mayer, R.J., 2005, Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6: 599.

    CAS  PubMed  Google Scholar 

  • Wertz, I.E., O’Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D.L., et al., 2004, Deubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signaling. Nature 430: 694.

    CAS  PubMed  Google Scholar 

  • Wilkinson, K.D., 2003, Signal transduction: aspirin, ubiquitin and cancer. Nature 424: 738.

    CAS  PubMed  Google Scholar 

  • Wilkinson-Berka, J.L., 2004, Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cyclooxygenase-2 and nitric oxide. Curr. Pharm. Des. 10: 3331.

    CAS  PubMed  Google Scholar 

  • Williams, B., Gallacher, B., Patel, H. and Orme, C., 1997, Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 46: 1497.

    CAS  PubMed  Google Scholar 

  • Wise, G.N., 1956, Retinal neovascularization. Trans. Am. Acad. Opththalmol. Soc. 54: 729.

    CAS  Google Scholar 

  • Xu, X., Zhu, Q., Xia, X., Zhang, S., Gu, Q. and Luo, D., 2004, Blood-retinal barrier breakdown induced by activation of protein kinase C via vascular endothelial growth factor in streptozotocin-induced diabetic rats. Curr. Eye Res. 28: 251.

    CAS  PubMed  Google Scholar 

  • Zeng, X.X., Ng, Y.K. and Ling, E.A., 2000, Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis. Neurosci. 17: 463.

    CAS  PubMed  Google Scholar 

  • Zheng, N., Wang, P., Jeffrey, P.D. and Pavletich, N.P., 2000, Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102: 533.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ambrósio, A.F., Pereira, P., Vaz, J.C. (2007). Diabetic Retinopathy, Inflammation, and Proteasome. In: Malva, J.O., Rego, A.C., Cunha, R.A., Oliveira, C.R. (eds) Interaction Between Neurons and Glia in Aging and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70830-0_22

Download citation

Publish with us

Policies and ethics