Skip to main content

Neuroinflammation and Mitochondrial Dysfunction in Alzheimer's and Prion's Diseases

  • Chapter
Book cover Interaction Between Neurons and Glia in Aging and Disease

Alzheimer’s disease (AD) and prion-related encephalopathies (PRE) are neurodegenerative disorders linked to the aberrant extracellular deposition of amyloidogenic proteins, amyloid-beta (A ), and pathogenic scrapie prion (PrPSc), respectively. In both disorders, cerebral amyloid deposits are associated with a local inflammatory response, which is initiated by the activation of microglia and recruitment of astrocytes. Activated microglia, particularly those in the vicinity of amyloid deposits can produce and release proinflammatory cytokines, chemokines, complement proteins, acute-phase proteins, and reactive oxygen and nitrogen species that can damage the neighboring neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Abramov, A.Y., Canevari, L. and Duchen, M.R., 2004, Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24: 565.

    CAS  PubMed  Google Scholar 

  • Abramov, A.Y., Jacobson, J., Wientjes, F., Hothersall, J., Canevari, L. and Duchen, M.R., 2005, Expression and modulation of an NADPH oxidase in mammalian astrocytes. J. Neurosci. 25: 9176.

    CAS  PubMed  Google Scholar 

  • Agostinho, P. and Oliveira, C.R., 2003, Involvement of calcineurin in the neurotoxic effects induced by amyloid-beta and prion peptides. Eur. J. Neurosci. 17: 1189.

    PubMed  Google Scholar 

  • Aguzzi, A. and Haass, C., 2003, Games played by rogue proteins in prion disorders and Alzheimer’s disease. Science 302: 814.

    CAS  PubMed  Google Scholar 

  • Aguzzi, A., Glatzel, M., Montrasio, F., Prinz, M. and Heppner, F.L., 2001, Interventional strategies against prion diseases. Nat. Rev. Neurosci. 2: 745.

    CAS  PubMed  Google Scholar 

  • Aisen, P.S., 2002, The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 1: 279.

    CAS  PubMed  Google Scholar 

  • Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W.S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I.R., McGeer, P.L., O'Banion, M.K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F.L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T., 2000, Inflammation and Alzheimer’s disease. Neurobiol Aging 21: 383.

    CAS  PubMed  Google Scholar 

  • Aloe, L., Fiore, M., Probert, L., Turrini, P. and Tirassa, P., 1999, Overexpression of tumour necrosis factor-alpha in the brain of transgenic mice differentially alters nerve growth factor levels and choline acetyltransferase activity. Cytokine 11: 45.

    CAS  PubMed  Google Scholar 

  • Anandatheerthavarada, H.K., Biswas, G., Robin, M.A. and Avadhani, N.G., 2003, Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161: 41.

    CAS  PubMed  Google Scholar 

  • Andersen, J.M., Myhre, O., Aarnes, H., Vestad, T.A. and Fonnum, F., 2003, Identification of the hydroxyl radical and other reactive oxygen species in human neutrophil granulocytes exposed to a fragment of the amyloid beta peptide. Free Radic. Res. 37: 269.

    CAS  PubMed  Google Scholar 

  • Bard, F., Cannon, C., Barbour, R., Burke, R.L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Lieberburg, I., Motter, R., Nguyen, M., Soriano, F., Vasquez, N., Weiss, K., Welch, B., Seubert, P., Schenk, D. and Yednock, T., 2000, Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat. Med. 6: 916.

    CAS  PubMed  Google Scholar 

  • Bianca, V.D., Dusi, S., Bianchini, E., Dal Pra, I. and Rossi, F., 1999, Beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J. Biol. Chem. 274: 15493.

    CAS  PubMed  Google Scholar 

  • Blasko, I., Marx, F., Steiner, E., Hartmann, T. and Grubeck-Loebenstein, B., 1999, TNFalpha plus IFNgamma induce the production of Alzheimer beta-amyloid peptides and decrease the secretion of APPs. FASEB J. 13: 63.

    CAS  PubMed  Google Scholar 

  • Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P. and Grubeck-Loebenstein, B., 2004, How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell. 3: 169.

    CAS  PubMed  Google Scholar 

  • Blass, J.P., 2002, Glucose/mitochondria in neurological conditions. Int. Rev. Neurobiol. 51: 325.

    CAS  PubMed  Google Scholar 

  • Block, M.L. and Hong, J.-S., 2005, Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76: 77.

    CAS  PubMed  Google Scholar 

  • Brown, D.R., Herms, J. and Kretzschmar, H.A., 1994, Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5: 2057.

    CAS  PubMed  Google Scholar 

  • Brown, D.R., Qin, K., Herms, J.W., Madlung, A., Manson, J., Strome, R., Fraser, P.E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D. and Kretzschmar, H., 1997, The cellular prion protein binds copper in vivo. Nature 390: 684.

    CAS  PubMed  Google Scholar 

  • Brown, G.C. and Bal-Price, A., 2003, Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol. Neurobiol. 27: 325.

    CAS  PubMed  Google Scholar 

  • Burwinkel, M., Riemer, C., Schwarz, A., Schultz, J., Neidhold, S., Bamme, T. and Baier, M., 2004, Role of cytokines and chemokines in prion infections of the central nervous system. Int. J. Dev. Neurosci. 22: 497.

    CAS  PubMed  Google Scholar 

  • Cardoso, S.M., Santos, S., Swerdlow, R.H. and Oliveira, C.R., 2001, Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J. 15: 1439.

    CAS  PubMed  Google Scholar 

  • Cartier, L., Hartley, O., Dubois-Dauphin, M. and Krause, K.H., 2005, Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Brain Res. Rev. 48: 16.

    CAS  PubMed  Google Scholar 

  • Choi, S.I., Ju, W.K., Choi, E.K., Kim, J., Lea, H.Z., Carp, R.I., Wisniewski, H.M. and Kim, Y.S., 1998, Mitochondrial dysfunction induced by oxidative stress in the brains of hamsters infected with the 263 K scrapie agent Acta Neuropathol. (Berl). 96: 279.

    CAS  Google Scholar 

  • Ciesielski-Treska, J., Grant, N.J., Ulrich, G., Corrotte, M., Bailly, Y., Haeberle, A.M., Chasserot-Golaz, S. and Bader, M.F., 2004, Fibrillar prion peptide (106-126) and scrapie prion protein hamper phagocytosis in microglia. Glia 46: 101.

    PubMed  Google Scholar 

  • Colton, C.A., Chernyshev, O.N., Gilbert, D.L. and Vitek, M.P., 2000, Microglial contribution to oxidative stress in Alzheimer’s disease. Ann. NY Acad. Sci. 899: 292.

    Article  CAS  PubMed  Google Scholar 

  • Combs, C.K., Johnson, D.E., Cannady, S.B., Lehman, T.M. and Landreth, G.E., 1999, Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J. Neurosci. 19: 928.

    CAS  PubMed  Google Scholar 

  • Cottrell, D.A., Borthwick, G.M., Johnson, M.A., Ince, P.G., and Turnbull, D.M., 2002, The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 28: 390.

    CAS  PubMed  Google Scholar 

  • D'Andrea, M.R., Cole, G.M. and Ard, M.D., 2004, The microglial phagocytic role with specific plaque types in the Alzheimer’s disease brain. Neurobiol. Aging 25: 675.

    PubMed  Google Scholar 

  • Deininger, M.H., Bekure-Nemariam, K., Trautmann, K., Morgalla, M., Meyermann, R. and Schluesener, H.J., 2003, Cyclooxygenase-1 and -2 in brains of patients who died with sporadic Creutzfeldt-Jakob disease. J. Mol. Neurosci. 20: 25.

    CAS  PubMed  Google Scholar 

  • DeMattos, R.B., Bales, K.R., Cummins, D.J., Paul, S.M. and Holtzman, D.M., 2002, Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295: 2264.

    CAS  PubMed  Google Scholar 

  • Dringen, R., 2005, Oxidative and antioxidative potential of brain microglial cells. Antioxid. Redox Signal 7: 1223.

    CAS  PubMed  Google Scholar 

  • Eckert, A., Keil, U., Marques, C.A., Bonert, A., Frey, C., Schussel, K. and Muller, W.E., 2003, Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem. Pharmacol. 66: 1627.

    CAS  PubMed  Google Scholar 

  • Eikelenboom, P. and van Gool, W.A., 2004, Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J. Neural Transm. 111: 281.

    CAS  PubMed  Google Scholar 

  • Eikelenboom, P., Zhan, S.S., van Gool, W.A. and Allsop, D., 1994, Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol. Sci. 15: 447.

    CAS  PubMed  Google Scholar 

  • Eikelenboom, P., Bate, C., van Gool, W.A., Hoozemans, J.J., Rozemuller, J.M., Veerhuis, R. and Williams, A., 2002, Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40: 232.

    CAS  PubMed  Google Scholar 

  • Emmerling, M.R., Watson, M.D., Raby, C.A. and Spiegel, K., 2000, The role of complement in Alzheimer’s disease pathology. Biochim. Biophys. Acta 1502: 158.

    CAS  PubMed  Google Scholar 

  • Enari, M., Flechsig, E. and Weissmann, C., 2001, Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98: 9295.

    CAS  PubMed  Google Scholar 

  • Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J. and Guenette, S., 2003, Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100: 4162.

    CAS  PubMed  Google Scholar 

  • Felton, L.M., Cunningham, C., Rankine, E.L., Waters, S., Boche, D. and Perry, V.H., 2005, MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol. Dis. 20: 283.

    CAS  PubMed  Google Scholar 

  • Freixes, M., Rodriguez, A., Dalfo, E. and Ferrer, I., 2006, Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol. Aging 27: 1807.

    CAS  PubMed  Google Scholar 

  • Garção, P., Oliveira, C.R. and Agostinho P., 2006, A comparative study of microglia activation induced by amyloid-beta and prion peptides. The role in neurodegeneration. J. Neurosci. Res. 84: 182.

    PubMed  Google Scholar 

  • Gelinas, D.S., DaSilva, K., Fenili, D., George-Hyslop, P. and McLaurin, J., 2004, Immunotherapy for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101 (suppl. 2): 14657.

    CAS  PubMed  Google Scholar 

  • Giovannini, M.G., Scali, C., Prosperi, C., Bellucci, A., Pepeu, G. and Casamenti, F., 2003, Experimental brain inflammation and neurodegeneration as model of Alzheimer’s disease: protective effects of selective COX-2 inhibitors. Int. J. Immunopathol. Pharmacol. 16 (suppl. 2): 31.

    CAS  PubMed  Google Scholar 

  • Guénette, S.Y., 2003, Mechanisms of Abeta clearance and catabolism. Neuromolecular Med. 4: 147.

    PubMed  Google Scholar 

  • Guentchev, M., Voigtlander, T., Haberler, C., Groschup, M.H. and Budka, H., 2000, Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7: 270.

    CAS  PubMed  Google Scholar 

  • Hanisch, U.-K., 2002, Microglia as a source and target of cytokines. Glia 40: 140.

    PubMed  Google Scholar 

  • Hansson, C.A., Frykman, S., Farmery, M.R., Tjernberg, L.O., Nilsberth, C., Pursglove, S.E., Ito, A., Winblad, B., Cowburn, R.F., Thyberg, J. and Ankarcrona, M., 2004, Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J. Biol. Chem. 279: 51654.

    CAS  PubMed  Google Scholar 

  • Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R.L., Atwood, C.S., Johnson, A.B., Kress, Y., Vinters, H.V., Tabaton, M., Shimohama, S., Cash, A.D., Siedlak, S.L., Harris, P.L., Jones, P.K., Petersen, R.B., Perry, G. and Smith, M.A., 2001, Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 21: 3017.

    CAS  PubMed  Google Scholar 

  • Hock, C., Konietzko, U., Streffer, J.R., Tracy, J., Signorell, A., Muller-Tillmanns, B., Lemke, U., Henke, K., Moritz, E., Garcia, E., Wollmer, M.A., Umbricht, D., de Quervain, D.J., Hofmann, M., Maddalena, A., Papassotiropoulos, A. and Nitsch, R.M., 2003, Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38: 547.

    CAS  PubMed  Google Scholar 

  • Hoozemans, J.J. and O’Banion, M.K., 2005, The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of nonsteroidal anti-inflammatory drugs. Curr. Drug Targets CNS Neurol. Disord. 4: 307.

    CAS  PubMed  Google Scholar 

  • Hurley, S.D., Olschowka, J.A. and O’Banion, M.K., 2002, Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J. Neurotrauma. 19: 1.

    PubMed  Google Scholar 

  • Husemann, J., Loike, J.D., Kodama, T. and Silverstein, S.C., 2001, Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar beta-amyloid. J. Neuroimmunol. 114: 142.

    CAS  PubMed  Google Scholar 

  • Husemann, J., Loike, J.D., Anankov, R., Febbraio, M. and Silverstein, S.C., 2002, Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40: 195.

    PubMed  Google Scholar 

  • Jeffrey, M., Goodsir, C.M., Bruce, M.E., McBride, P.A. and Farquhar, C., 1994, Morphogenesis of amyloid plaques in 87V murine scrapie. Neuropathol. Appl. Neurobiol. 20: 535.

    CAS  PubMed  Google Scholar 

  • Johnstone, M., Gearing, A.J. and Miller, K.M., 1999, A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J. Neuroimmunol. 93: 182.

    CAS  PubMed  Google Scholar 

  • Kim, S.U. and de Vellis, J., 2005, Microglia in health and disease. J. Neurosci. Res. 81: 302.

    CAS  PubMed  Google Scholar 

  • Kitazawa, M., Yamasaki, T.R. and LaFerla, F.M., 2004, Microglia as a potential bridge between the amyloid {beta}-peptide and tau. Ann. NY Acad. Sci. 1035: 85.

    CAS  PubMed  Google Scholar 

  • Klamt, F., Dal-Pizzol, F., Conte da Frota, M.L., Walz, R., Andrades, M.E., da Silva, E.G., Brentani, R.R., Izquierdo, I. and Fonseca Moreira, J.C., 2001, Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic. Biol. Med. 30: 1137.

    CAS  PubMed  Google Scholar 

  • Klein, M.A., Kaeser, P.S., Schwarz, P., Weyd, H., Xenarios, I., Zinkernagel, R.M., Carroll, M.C., Verbeek, J.S., Botto, M., Walport, M.J., Molina, H., Kalinke, U., Acha-Orbea, H. and Aguzzi, A., 2001, Complement facilitates early prion pathogenesis. Nat. Med. 7: 488.

    CAS  PubMed  Google Scholar 

  • Koenigsknecht, J. and Landreth, G., 2004, Microglial phagocytosis of fibrillar β-amyloid through a β1-integrin-dependent mechanism. J. Neurosci. 24: 9838.

    CAS  PubMed  Google Scholar 

  • Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., Higgs, R., Liu, F., Malkani, S., Bales, K.R. and Paul, S.M., 2004, Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10: 719.

    CAS  PubMed  Google Scholar 

  • Kopec, K.K. and Carroll, R.T., 1998, Alzheimer’s beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J. Neurochem. 71: 2123.

    CAS  PubMed  Google Scholar 

  • Le, Y., Gong, W., Tiffany, H.L., Tumanov, A., Nedospasov, S., Shen, W., Dunlop, N.M., Gao, J.L., Murphy, P.M., Oppenheim, J.J. and Wang, J.M., 2001a, Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. Neurosci. 21: 123.

    Google Scholar 

  • Le, Y., Yazawa, H., Gong, W., Yu, Z., Ferrans, V.J., Murphy, P.M. and Wang, J.M., 2001b, The neurotoxic prion peptide fragment PrP(106-126) is a chemotactic agonist for the G-protein-coupled receptor formyl peptide receptor-like 1. J. Immunol. 166: 1448.

    CAS  PubMed  Google Scholar 

  • Lee, D.W., Sohn, H.O., Lim, H.B., Lee, Y.G, Kim, Y.S., Carp, R.I. and Wisniewski, H.M., 1999, Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic. Res. 30: 499.

    CAS  PubMed  Google Scholar 

  • Lee, H.P., Jun, Y.C., Choi, J.K., Kim, J.I., Carp, R.I. and Kim, Y.S., 2005, The expression of RANTES and chemokine receptors in the brains of scrapie-infected mice. J. Neuroimmunol. 158: 26.

    CAS  PubMed  Google Scholar 

  • LeVine, H. 3rd., 2004, The Amyloid Hypothesis and the clearance and degradation of Alzheimer’s beta-peptide. J. Alzheimers Dis. 6: 303.

    CAS  PubMed  Google Scholar 

  • Lewandowska, E., Bertrand, E., Kulczycki, J., Lipczynska-Lojkowska, W., Lechowicz, W. and Stankiewicz, J., 1999, Microglia and neuritic plaques in familial Alzheimer’s disease induced by a new mutation of presenilin-1 gene. An ultrastructural study. Folia Neuropathol. 37: 243.

    CAS  PubMed  Google Scholar 

  • Li, Y., Liu, L., Barger, S.W., Mrak, R.E. and Griffin, W.S., 2001, Vitamin E suppression of microglial activation is neuroprotective. J. Neurosci. Res. 66: 163.

    CAS  PubMed  Google Scholar 

  • Lindberg, C., Selenica, M.L., Westlind-Danielsson, A. and Schultzberg, M., 2005, Beta-amyloid protein structure determines the nature of cytokine release from rat microglia. J. Mol. Neurosci. 27: 1.

    CAS  PubMed  Google Scholar 

  • Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., Trinchese, F., Liu, S., Gunn-Moore, F., Lue, L.F., Walker, D.G., Kuppusamy, P., Zewier, Z.L., Arancio, O., Stern, D., Yan, S.S. and Wu, H., 2004, ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304: 448.

    CAS  PubMed  Google Scholar 

  • Luth, H.J., Munch, G. and Arendt, T., 2002, Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res. 953: 135.

    PubMed  Google Scholar 

  • Mabbot, N.A., 2004, The complement system in prion disease. Curr. Opinion Immunol. 16: 587.

    Google Scholar 

  • Mallucci, G. and Collinge, J., 2005, Rational targeting for prion therapeutics. Nat. Rev. Neurosci. 6: 23.

    CAS  PubMed  Google Scholar 

  • Marella, M. and Chabry, J., 2004, Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J. Neurosci. 24: 620.

    CAS  PubMed  Google Scholar 

  • Marella, M., Gaggioli, C., Batoz, M., Deckert, M., Tartare-Deckert, S. and Chabry, J., 2005, Pathological prion protein exposure switches on neuronal mitogen-activated protein kinase pathway resulting in microglia recruitment. J. Biol. Chem. 280: 1529.

    CAS  PubMed  Google Scholar 

  • Mhatre, M., Floyd, R.A. and Hensley, K., 2004, Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J. Alzheimers Dis. 6: 147.

    CAS  PubMed  Google Scholar 

  • Miele, G., Jeffrey, M., Turnbull, D., Manson, J. and Clinton, M., 2002, Ablation of cellular prion protein expression affects mitochondrial numbers and morphology. Biochem. Biophys. Res. Commun. 291: 372.

    CAS  PubMed  Google Scholar 

  • Minghetti, L., 2004, Cyclo-oxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63: 901.

    CAS  PubMed  Google Scholar 

  • Minghetti, L., Ajmone-Cat, M.A., De Berardinis, M.A. and De Simone, R., 2005, Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res. Brain Res. Rev. 48: 251.

    CAS  PubMed  Google Scholar 

  • Moreira, P.I., Honda, K., Liu, Q., Santos, M.S., Oliveira, C.R., Aliev, G., Nunomura, A., Zhu, X., Smith, M.A. and Perry, G., 2005, Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr. Alzheimer Res. 2: 403.

    CAS  PubMed  Google Scholar 

  • Moreira, P.I., Santos, M.S., Moreno, A., Rego, A.C. and Oliveira, C., 2002, Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J. Neurosci. Res. 69: 257.

    CAS  PubMed  Google Scholar 

  • Morelli, L., Llovera, R., Ibendahl, S. and Castano, E.M., 2002, The degradation of amyloid beta as a therapeutic strategy in Alzheimer’s disease and cerebrovascular amyloidoses. Neurochem. Res. 27: 1387.

    CAS  PubMed  Google Scholar 

  • Mrak, R.E. and Griffin, W.S., 2001, Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22: 903.

    CAS  PubMed  Google Scholar 

  • Munch, G., Gasic-Milenkovic, J. and Arendt, T., 2003, Effect of advanced glycation end-products on cell cycle and their relevance for Alzheimer’s disease. J. Neural Transm. Suppl. 65: 63.

    PubMed  Google Scholar 

  • Nagele, R.G., Wegiel, J., Venkataraman, V., Imaki, H., Wang, K.C. and Wegiel, J., 2004, Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol. Aging 25: 663.

    CAS  PubMed  Google Scholar 

  • Nakanishi, H., 2003, Microglial functions and proteases. Mol. Neurobiol. 27: 163.

    CAS  PubMed  Google Scholar 

  • Nicoll, J.A., Wilkinson, D., Holmes, C., Steart, P., Markham, H. and Weller, R.O., 2003, Neuropathology of human Alzheimer’s disease after immunization with amyloid-beta peptide: a case report. Nat. Med. 9: 448.

    CAS  PubMed  Google Scholar 

  • O’Donovan, C.N., Tobin, D. and Cotter, T.G., 2001, Prion protein fragment PrP-(106-126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J. Biol. Chem. 276: 43516.

    PubMed  Google Scholar 

  • Pereira, C., Santos, M.S. and Oliveira, C., 1999, Involvement of oxidative stress on the impairment of energy metabolism induced by Abeta peptides on PC12 cells: protection by antioxidants. Neurobiol. Dis. 6: 209.

    CAS  PubMed  Google Scholar 

  • Pereira, C., Agostinho, P., Moreira, P.I., Cardoso, S.M. and Oliveira C.R., 2005, Alzheimer’s disease-associated neurotoxic mechanisms and neuroprotective strategies. Curr. Drug Targets CNS Neurol. Disord. 4: 383.

    CAS  PubMed  Google Scholar 

  • Peretz, D., Williamson, R.A., Kaneko, K., Vergara, J., Leclerc, E., Schmitt-Ulms, G., Mehlhorn, I.R., Legname, G., Wormald, M.R., Rudd, P.M., Dwek, R.A., Burton, D.R. and Prusiner, S.B., 2001, Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412: 739.

    CAS  PubMed  Google Scholar 

  • Perez, A., Morelli, L., Cresto, J.C. and Castano, E.M., 2000, Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer’s disease and control brains. Neurochem. Res. 25: 247.

    CAS  PubMed  Google Scholar 

  • Peyrin, J.M., Lasmezas, C.I., Haik, S., Tagliavini, F., Salmona, M., Williams, A., Richie, D., Deslys, J.P. and Dormont, D., 1999, Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. Neuroreport 10: 723.

    CAS  PubMed  Google Scholar 

  • Pfeifer, M., Boncristiano, S., Bondolfi, L., Stalder, A., Deller, T., Staufenbiel, M., Mathews, P.M. and Jucker, M., 2002, Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298: 1379.

    CAS  PubMed  Google Scholar 

  • Pocernich, C.B. and Butterfield, D.A., 2003, Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer’s disease. Neurotox. Res. 5: 515.

    PubMed  Google Scholar 

  • Prusiner, S.B., 1996, Molecular biology and pathogenesis of prion diseases. Trends Biochem. Sci. 21: 482.

    CAS  PubMed  Google Scholar 

  • Quintanilla, R.A., Orellana, D.I., Gonzalez-Billault, C. and Maccioni, R.B., 2004, Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 295: 245.

    CAS  PubMed  Google Scholar 

  • Rogers, J.T., Leiter, L.M., McPhee, J., Cahill, C.M., Zhan, S.S., Potter, H. and Nilsson, L.N., 1999, Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences. J. Biol. Chem. 274: 6421.

    CAS  PubMed  Google Scholar 

  • Rogers, J., Strohmeyer, R., Kovelowski, C.J. and Li, R., 2002, Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 40: 260.

    PubMed  Google Scholar 

  • Sano, M., Ernesto, C., Thomas, R.G., Klauber, M.R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C.W., Pfeiffer, E., Schneider, L.S. and Thal, L.J., 1997, A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N. Engl. J. Med. 336: 1216.

    CAS  PubMed  Google Scholar 

  • Sasaki, N., Takeuchi, M., Chowei, H., Kikuchi, S., Hayashi, Y., Nakano, N., Ikeda, H., Yamagishi, S., Kitamoto, T., Saito, T. and Makita, Z., 2002, Advanced glycation end-products (AGE) and their receptor (RAGE) in the brain of patients with Creutzfeldt-Jakob disease with prion plaques. Neurosci. Lett. 326: 117.

    CAS  PubMed  Google Scholar 

  • Schenk, D.B. and Yednock, T., 2002, The role of microglia in Alzheimer’s disease: friend or foe? Neurobiol. Aging 23: 677.

    CAS  PubMed  Google Scholar 

  • Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D. and Seubert, P., 1999, Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173.

    CAS  PubMed  Google Scholar 

  • Schultz, J., Schwarz, A., Neidhold, S., Burwinkel, M., Riemer, C., Simon, D., Kopf, M., Otto, M. and Baier, M., 2004, Role of interleukin-1 in prion disease-associated astrocyte activation. Am. J. Pathol. 165: 671.

    CAS  PubMed  Google Scholar 

  • Selkoe, D.J. and Lansbury Jr., P.J., 1999, Biochemistry of Alzheimer’s and prion diseases. In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects 6th edition, G.J. Siegel, (ed.), Lippincott-Raven, Philadelphia, pp. 949-968.

    Google Scholar 

  • Sleegers, K. and van Duijn, C.M., 2001, Alzheimer’s disease: genes, pathogenesis and risk prediction. Community Genet. 4: 197.

    PubMed  Google Scholar 

  • Smith, M.A., Harris, P.L., Sayre, L.M. and Perry, G., 1997, Iron accumulation in Alzheimer’s disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94: 9866.

    CAS  PubMed  Google Scholar 

  • Solforosi, L., Criado, J.R., McGavern, D.B., Wirz, S., Sanchez-Alavez, M., Sugama, S., DeGiorgio, L.A., Volpe, B.T., Wiseman, E., Abalos, G., Masliah, E., Gilden, D., Oldstone, M.B., Conti, B. and Williamson. R.A., 2004, Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303: 1514.

    CAS  PubMed  Google Scholar 

  • Solomon, B., Koppel, R., Hanan, E. and Katzav, T., 1996, Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc. Natl Acad. Sci. USA 93: 452.

    CAS  PubMed  Google Scholar 

  • Streit, W.J., Conde, J.R. and Harrison, J.K., 2001, Chemokines and Alzheimer’s disease. Neurobiol. Aging 22: 909.

    CAS  PubMed  Google Scholar 

  • Streit, W.J., Conde, J.R., Fendrick, S.E., Flanary, B.E. and Mariani, C.L., 2005, Role of microglia in the central nervous system’s immune response. Neurol. Res. 27: 685.

    PubMed  Google Scholar 

  • Stuchbury, G. and Münch, G., 2005, Alzheimer’s associated inflammation, potential drug targets and future therapies. J. Neural Transm. 112: 429.

    CAS  PubMed  Google Scholar 

  • Sung, S., Yao, Y., Uryu, K., Yang, H., Lee, V.M., Trojanowski, J.Q. and Pratico, D., 2004, Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J. 18: 323.

    CAS  PubMed  Google Scholar 

  • Swerdlow, R.H. and Khan, S.M., 2004, A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses 63: 8.

    CAS  PubMed  Google Scholar 

  • Takuma, K., Yao, J., Huang, J., Xu, H., Chen, X., Luddy, J., Trillat, A.C., Stern, D.M., Arancio, O. and Yan, S.S., 2005, ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 19: 597.

    CAS  PubMed  Google Scholar 

  • Tuppo, E.E. and Arias, H.R., 2005, The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 37: 289.

    CAS  PubMed  Google Scholar 

  • Van Everbroeck, B., Dobbeleir, I., De Waele, M., De Leenheir, E., Lubke, U., Martin, J.J. and Cras, P., 2004, Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer’s disease. Acta Neuropathol. (Berl). 108: 194.

    Google Scholar 

  • Veerhuis, R., Hoozemans, J.J., Janssen, I., Boshuizen, R.S., Langeveld, J.P. and Eikelenboom, P., 2002, Adult human microglia secrete cytokines when exposed to neurotoxic prion protein peptide: no intermediary role for prostaglandin E2. Brain Res. 925: 195.

    CAS  PubMed  Google Scholar 

  • Veerhuis, R., Van Breemen, M.J., Hoozemans, J.M., Morbin, M., Ouladhadj, J., Tagliavini, F. and Eikelenboom, P., 2003, Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol. (Berl) 105: 135.

    CAS  Google Scholar 

  • Veerhuis, R., Boshuizen, R.S. and Familian, A., 2005a, Amyloid associated proteins in Alzheimer’s and prion disease. Curr. Drug Targets CNS Neurol. Disord. 4: 235.

    CAS  PubMed  Google Scholar 

  • Veerhuis, R., Boshuizen, R.S., Morbin, M., Mazzoleni, G., Hoozemans, J.J., Langedijk, J.P., Tagliavini, F., Langeveld, J.P. and Eikelenboom, P., 2005b, Activation of human microglia by fibrillar prion protein-related peptides is enhanced by amyloid-associated factors SAP and C1q. Neurobiol. Dis. 19: 273.

    CAS  PubMed  Google Scholar 

  • Walsh, D.T., Perry, V.H. and Minghetti, L., 2000, Cyclooxygenase-2 is highly expressed in microglial-like cells in a murine model of prion disease. Glia 29: 392.

    CAS  PubMed  Google Scholar 

  • Weggen, S., Eriksen, J.L., Sagi, S.A., Pietrzik, C.U., Ozols, V., Fauq, A., Golde, T.E. and Koo, E.H., 2003, Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J. Biol. Chem. 278: 31831.

    CAS  PubMed  Google Scholar 

  • Wegiel, J., Imaki, H., Wang, K.C., Wegiel, J., Wronska, A., Osuchowski, M. and Rubenstein, R., 2003, Origin and turnover of microglial cells in fibrillar plaques of APPsw transgenic mice. Acta Neuropathol. (Berl.) 105: 393.

    Google Scholar 

  • Weldon, D.T., Rogers, S.D., Ghilardi, J.R., Finke, M.P., Cleary, J.P., O’Hare, E., Esler, W.P., Maggio, J.E. and Mantyh, P.W., 1998, Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci. 18: 2161.

    CAS  PubMed  Google Scholar 

  • Wenk, G.L., McGann, K., Hauss-Wegrzyniak, B. and Rosi, S., 2003, The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer’s disease. Neuroscience 121: 719.

    CAS  PubMed  Google Scholar 

  • White, A.R., Enever, P., Tayebi, M., Mushens, R., Linehan, J., Brandner, S., Anstee, D., Collinge, J. and Hawke, S., 2003, Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422: 80.

    CAS  PubMed  Google Scholar 

  • Wisniewski, T., Ghiso, J. and Frangione, B., 1997, Biology of A-beta-amyloid in Alzheimer’s disease. Neurobiol. Dis. 4: 313.

    CAS  PubMed  Google Scholar 

  • Wong, A., Luth, H.J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T. and Munch G., 2001, Advanced glycation end-products co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res. 920: 32.

    CAS  PubMed  Google Scholar 

  • Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., Silverstein, S.C. and Husemann, J., 2003, Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9: 453.

    CAS  PubMed  Google Scholar 

  • Xia, M. and Hyman, B.T., 2002, GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation-a role in Alzheimer’s disease? J. Neuroimmunol. 122: 55.

    CAS  PubMed  Google Scholar 

  • Xia, M., Qin, S., McNamara, M., Mackay, C. and Hyman, B.T., 1997, Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. Am. J. Pathol. 150: 1267.

    CAS  PubMed  Google Scholar 

  • Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D. and Schmidt, A.M., 1996, RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382: 685.

    CAS  PubMed  Google Scholar 

  • Zandi, P.P., Anthony, J.C., Khachaturian, A.S., Stone, S.V., Gustafson, D., Tschanz, J.T., Norton, M.C., Welsh-Bohmer, K.A. and Breitner, J.C., 2004, Reduced risk of Alzheimer’s disease in users of antioxidant vitamin supplements: the Cache County Study. Arch. Neurol. 61: 82.

    PubMed  Google Scholar 

  • Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J.W., Wu, X., Gonzalez-DeWhitt, P.A., Gelfanova, V., Hale, J.E., May, P.C., Paul, S.M. and Ni, B., 2003, Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302: 1215.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Agostinho, P., Oliveira, C.R. (2007). Neuroinflammation and Mitochondrial Dysfunction in Alzheimer's and Prion's Diseases. In: Malva, J.O., Rego, A.C., Cunha, R.A., Oliveira, C.R. (eds) Interaction Between Neurons and Glia in Aging and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-70830-0_14

Download citation

Publish with us

Policies and ethics